Visual Skills of the Female Athletes in Team and Individual Sports

Nahid Mohammadi, Robabeh Rostami*, Mahbubeh Alborzi

1Department of Physical Education, School of education & Psychology, Shiraz University, Shiraz, Iran. 2Department of Elementary Education, School of education & Psychology, Shiraz University, Shiraz, Iran.

ABSTRACT

Visual has always been recognized as one of the most important sensory systems involved in the implementation of many athletic skills because of the close and necessary relationship with performing the movements, and it is considered particularly important by specialists in learning and motor control. Today, in addition to assessing the key indices in athletic performance (physical, medical, psychological and nutritional evaluations), visual skills assessment is also held in great importance. In this regard, the present study aims to answer the question of whether the difference between the visual skills of athletes (team and individual) and non-athletes is significant. For this purpose, 85 subjects (44 non-athletes, 22 athletes in team sports, and 19 athletes in individual sports) participated in this study and were selected using purposive sampling. The research instrument was "sports vision tests of Wilson and Falkel (2004)". The psychometric properties of this test were studied and confirmed through the correlation between the referees and retest method. The results of the statistical analyses showed that there were significant differences between focusing (P=0.001), tracking (P=0.0001), sequencing (p=0.009), eye-hand coordination (P=0.0001), and vergence (P=0.015) of all-girl teams and individual sports athletes with non-athletes. Just as female individual and team sports athletes were better in focusing and tracking than non-athletes, individual sports athletes were better in sequencing than team sports athletes and non-athletes, and non-athletes were better in eye-hand coordination and vergence. However, in regards to visualization, no significant difference was observed between the three groups. According to the results, participation in sports activities, regardless of the type of activity, helps an individual to obtain better abilities in the visual system and its skills. Additionally, the role of visual skills in individual and team fields is different; therefore, due to the importance of vision, it is recommended that coaches consider special planning along with other motor capabilities.

KEY WORDS: Visual Skills, Athletes, Focusing, Tracking, Sequencing, Eye-Hand Coordination, Vergence.

INTRODUCTION

A major challenge in the studies of motor learning is reaching a certain level of expertise and passing through the process of learning a skill in the optimum way. It seems that the implementation of skills is always dependent on learning; therefore, the use of appropriate exercises, based on principles of motor learning, leads to the storage and retrieval of information in the memory. Thus, motor skills are produced based on the previous learned actions (1). "Skill", in terms of Guthrie (1952), is a functionality that reaches the desired result through determined confidence and spending the least energy or time (2). This ability represents a
level of expertise and it comprises a division of
the physical, technical, tactical and mental skills
(3).

Recently, another collection of skills, known
as "vision skills", has attracted the attention of
motor behavior specialists. Due to the growing
interest in the role of this type of skill on
performance, a relatively new interdisciplinary
field has been formed. The area that is known as
"athlete's vision" was invented in the early 1960s
in America by Optometrists and
Ophthalmologists (4, 5).

Vision plays an important role in our daily
activities and, those who are deprived of vision
have problems in their performance in the
visionary world. Undoubtedly, therefore, the role
of this information is very important in motor
control (3, 6). Many experts believe that the
vision system is the richest source of information
about the world in which we live (7).

Therefore, the issue of learning, implementation of motor skills, and the visual
system are very important. Accordingly, it is not
surprising that researchers have tried to find a
relationship between visual performance and
motor behavior because of the obvious
importance of vision in motor tasks; so far,
however, few studies have been carried out on
the visual and eye socket in terms of health,
caring and analytical components (6). According
to those studies carried out, it appears that the
function of skills in the visual function is
different from other senses (7).

Visual has two performance categories,
which include visual-motor skills and visual
perception. "Visual-motor skills" are intimately
related to athletic performance. In the visual-
motor system, four main motor skills are related
to the eyes. These skills include: Eye-hand
coordination, Tracking, Accommodation
(focusing) and vergence. Another aspect of the
visual system is "the process of visual
perception". Visual-perceptual skills include
visual memory, visualization, and figure-ground
Perception (8). Another important aspect of
vision is the interaction between visual-motor
and visual-perceptual skills, which enable the
athlete to pass her teammates without looking at
them. In most sports skills and daily tasks, these
skills are used; for example, being able to hit a
ball is a skill that is highly dependent on the
ability to track. It can be said that athletes who
do not have this action have few tracking skills
(6). There are evidences that support this belief
(there is a strong correlation between
performance and visual). For example, Hudak
and Spaniol (2012) found that athlete students
had better visual skills than non-athletes (9).
Halder and Saha (2013) reported that athletes
had significantly better performance in eye-hand
coordination than non-athletes (10).

Other researchers, including Du Toit et al.
(2012), assessed the visual skills of non-active
students and active military personnel using the
vision test of Wilson and Falkel (2004) (8). The
results demonstrated that eye-hand coordination
and tracking skills were stronger in the military
personnel, while sequencing and visualization
skills in the students were superior. Meanwhile,
in the focusing, there were significant
differences between the military personnel and
the students (8). In general, due to the research,
it is concluded that physical activity can
influence the visual performance skills; the
diversity of findings may be related to the use of
laboratory tools, gender, sample size, measuring
some skills, vision skills, and different age
ranges (8-13). However, despite the fundamental
role of physical activity, it is considered less.

In addition to the foregoing, it is worth
mentioning that visual-perceptual and visual-
motor skills in all athletes (whether in a team or
an individual) are not the same (14). Also, as
many aspects of the athlete's abilities can be
improved by specific exercises, visual-
perceptual and visual-motor abilities can be
changed significantly by sports vision training
(15); the changes need identification of the
visual skills that greatly depend on the particular
type of sport (16). To date, no research has been
found in which the visual skills of sports athletes
have been studied.

In total, according to the presented theory and
literature principles of research, most of the
researches that have been conducted in the area
of sports have assessed the physiological and
psychological characteristics involved in
different sports. However, very few studies have
been conducted on the visual skills, and most of
these focused on athletes, non-athletes, and
soldiers, and used laboratory analysis tools. It is
worth noting that field methods are very

important when it comes to measuring visual skills, especially when we allow the assessments to occur in the community places such as schools, sports halls.

In this regard, the importance of visual skills in people's lives and its central role has been observed as one of the strongest predictors of future physical activities that comprise the missing part in training programs. So far, no study has been conducted in this field. Considering the noted cases, the present study is conducted in order to answer the following questions:

1. Do athletes (team and individual) have a better visual function compared to non-athletes?
2. Are there differences between individuals and team sports athletes in regards their vision skills?

Answering these questions can help coaches, athletes, and other members of the community to enhance visual skills, which could have an important effect on the explanation and determination of the visual skills. Answers to these questions can be used in scouting players. Additionally, recognition of visual skills can also be used to identify weaknesses in athletic performance. On the other hand, this data may be a reference for educators to provide training interventions in order to improve visual function and motion, so that the athletes can show better performance in all competitive areas.

MATERIALS AND METHODS
This study is causal-comparative study. The present study is applicable due to the time length, the cross type and in terms of the obtained results. It is noteworthy that all stages of the study were approved by the Ethics Committee of Shiraz University.

Participants. Participants in this study consisted of 85 students (44 non-athletes, 22 athletes of team sports and 19 athletes of individual sports) who were selected from all the female student athletes of Shiraz University who were enrolled in the academic year 2013-2014 through the purposive sampling method, and according to the inclusion and exclusion criteria of the study. The most important criteria included those with a sports history, lack of eye diseases, or diseases of the inner eye. It is noteworthy that athletes were active in team sports (basketball, volleyball and futsal) and individual sports (swimming, badminton, table tennis, and running). In the beginning, a summary of the research project was explained to everyone. Then, after obtaining consent from the participants, these people were recruited to the medical history study and checked for any eye diseases, dizziness or eye surgery.

Research Tools. In order to assess the visual skills of the test subjects, the sports vision test of Wilson and Falkel (2004) was carried out on the participants (6). This test has been used in several studies, such asMohammadi, Rostami and Alborzi (2015), Rostami, Mohammadi, and Alborzi (2015), Fourie (2013), Du Toit et al. (2012, 2012)(8, 12, 17-19). It should be noted that, for the psychometric properties of this test, three methods were used, namely content validity, correlation between the referees, and the test-retest method. It is approved as follows (18):

Table 1. Information on methods of correlation between the experimenters and test-retest

<table>
<thead>
<tr>
<th>Visual Skills</th>
<th>Test-retest</th>
<th>Methods of correlation between the experimenters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p</td>
<td>r</td>
</tr>
<tr>
<td>Focusing</td>
<td>0.001</td>
<td>0.93</td>
</tr>
<tr>
<td>Tracking</td>
<td>0.001</td>
<td>0.92</td>
</tr>
<tr>
<td>Vergence</td>
<td>0.001</td>
<td>0.93</td>
</tr>
<tr>
<td>Sequencing</td>
<td>0.001</td>
<td>0.88</td>
</tr>
<tr>
<td>Eye-hand</td>
<td>0.001</td>
<td>0.94</td>
</tr>
<tr>
<td>Coordination</td>
<td>0.001</td>
<td>0.91</td>
</tr>
</tbody>
</table>

The test has been considered for reliability as well as for low cost, compared to other similar tests which are available for clinical optometry centers and have been used for the assessment of some visual skills. The test includes six subtests (Accommodation or Focusing, Tracking, Vergence, Sequencing, Visualization, Eye-hand coordination), which were performed by the participants sequentially with a rest period of one minute after the execution of each sub-test. It should be noted that the subjects repeated each test twice and the average performance was
recorded. In this study, the duration of the implementation of this test was reported as 15 to 20 minutes for each participant (6).

Data Analysis. The raw data obtained from the measurement of variables using statistical software SPSS version 22 were analyzed using descriptive and inferential statistics. The findings show that the Kolmogorov-Smirnov test was used to check the normality of the data distribution. The Levine test was used for the evaluation of homogeneity of variance and variance analysis. This study analyzed whether the athletes (team and individual) have a better visual function compared to non-athletes. Whether there is any difference between team and individual athletes in visual skills. An one way analysis of variance (ANOVA) was also used. Finally, Tukey’s range test was applied to compare the visual skills of groups at a significance level (p<0.05).

RESULTS

The descriptive data suggests the homogeneity of three groups in terms of age, height and weight (Table 2).

The results of the ANOVA test showed that there was a significant difference between focus on visual skills (F=7.67, df=2, p=0.001), tracking (F=8.93, df=2, p=0.0001), sequence (F=5.05, df=2, p=0.009), eye-hand coordination (F=14.64, df=2, p=0.0001), and vergence (F=4.4, df=2, p=0.015) between the groups (Table 3).

| Table 2. Descriptive information of demographic variables (Mean±SD) |
|-----------------|--------|-------|---------|--------|
| Groups | N | Weight (Kg) | Height (cm) | Age (year) |
| Team sports athletes | 22 | 60.87±3.91 | 163±4.46 | 21.82±2.70 |
| Individual sports athletes | 19 | 57.43±4.42 | 160±4.12 | 21.68±2.96 |
| Non-athletes | 44 | 61.72±4.79 | 162±3.63 | 21.80±2.66 |

| Table 3. Results of the ANOVA test in Visual Skills |
|-----------------|--------|-------|--------|
| Sum of Squares | df | Mean Square | F | p |
| Focusing | Between Groups | 824.933 | 2 | 412.466 | 7.668 | 0.001 |
| | Within Groups | 4410.879 | 82 | 53.791 |
| | Total | 5235.812 | 84 |
| Tracking | Between Groups | 1213.144 | 2 | 606.572 | 8.926 | 0.0001 |
| | Within Groups | 5572.103 | 82 | 67.952 |
| | Total | 6785.247 | 84 |
| Vergence | Between Groups | 152.897 | 2 | 76.449 | 4.398 | 0.015 |
| | Within Groups | 1425.526 | 82 | 17.384 |
| | Total | 1578.424 | 84 |
| Sequencing | Between Groups | 276.176 | 2 | 138.088 | 5.048 | 0.009 |
| | Within Groups | 2243.071 | 82 | 27.355 |
| | Total | 2519.247 | 84 |
| Eye-hand Coordination | Between Groups | 4785.319 | 2 | 2392.659 | 14.645 | 0.0001 |
| | Within Groups | 13397.181 | 82 | 163.380 |
| | Total | 18182.499 | 84 |
| Visualization | Between Groups | 394.130 | 2 | 197.065 | 2.582 | 0.082 |
| | Within Groups | 6258.782 | 82 | 76.327 |
| | Total | 6652.912 | 84 |

The results showed a significant difference in visual skills including focusing, tracking, sequencing, eye-hand coordination, and vergence of female athletes (individual and team sports) with non-athletes. In the other words, females athletes (individual and team sports) were superior in focusing and tracking than non-athletes. Females of individual athletes were
superior in sequencing than non-athletes and females of team athletes. Non-athletes were superior in eye-hand coordination than females athletes. Non-athletes were superior in vergence than females of team athletes. The results are presented in Table 4.

Table 4. Results of the Tukey’s range test in visual skills between the groups

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(I) group</th>
<th>(J) group</th>
<th>Mean Difference (I-J)</th>
<th>SE</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focusing</td>
<td>Individual sports athletes</td>
<td>Team sports athletes</td>
<td>3.62919</td>
<td>2.29699</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>7.65191*</td>
<td>2.01337</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Team sports athletes</td>
<td>Individual sports athletes</td>
<td>-3.62919*</td>
<td>2.96999</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>4.02273*</td>
<td>1.91509</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>Non-athlete</td>
<td>Individual sports athletes</td>
<td>-7.65191*</td>
<td>2.01337</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Team sports athletes</td>
<td>-4.02273*</td>
<td>1.91509</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>Individual sports athletes</td>
<td>Team sports athletes</td>
<td>-6.8660</td>
<td>2.58170</td>
<td>0.791</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>7.17703*</td>
<td>2.62929</td>
<td>0.002</td>
</tr>
<tr>
<td>Tracking</td>
<td>Team sports athletes</td>
<td>Individual sports athletes</td>
<td>.68660</td>
<td>2.58170</td>
<td>0.791</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>7.86364*</td>
<td>2.15247</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Non-athlete</td>
<td>Individual sports athletes</td>
<td>-7.17703*</td>
<td>2.62929</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Team sports athletes</td>
<td>-7.86364*</td>
<td>2.15247</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Individual sports athletes</td>
<td>Team sports athletes</td>
<td>2.24880</td>
<td>1.30582</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>-.97847</td>
<td>1.14458</td>
<td>0.395</td>
</tr>
<tr>
<td></td>
<td>Team sports athletes</td>
<td>Individual sports athletes</td>
<td>-2.24880</td>
<td>1.30582</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>3.22727*</td>
<td>1.08872</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Non-athlete</td>
<td>Individual sports athletes</td>
<td>.97847</td>
<td>1.14458</td>
<td>0.395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Team sports athletes</td>
<td>-3.22727*</td>
<td>1.08872</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Individual sports athletes</td>
<td>Team sports athletes</td>
<td>4.21770*</td>
<td>1.63802</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>4.37679*</td>
<td>1.43576</td>
<td>0.003</td>
</tr>
<tr>
<td>Vergence</td>
<td>Team sports athletes</td>
<td>Individual sports athletes</td>
<td>-4.21770*</td>
<td>1.63802</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>1.5909</td>
<td>1.36568</td>
<td>0.908</td>
</tr>
<tr>
<td></td>
<td>Individual sports athletes</td>
<td>Team sports athletes</td>
<td>-4.37679*</td>
<td>1.43576</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>1.5909</td>
<td>1.36568</td>
<td>0.908</td>
</tr>
<tr>
<td></td>
<td>Team sports athletes</td>
<td>Individual sports athletes</td>
<td>-2.55895</td>
<td>4.00317</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>-16.28372*</td>
<td>3.50887</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Individual sports athletes</td>
<td>Team sports athletes</td>
<td>2.55895</td>
<td>4.00317</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>-13.72477*</td>
<td>3.33760</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Team sports athletes</td>
<td>Individual sports athletes</td>
<td>16.28372</td>
<td>3.50887</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>13.72477*</td>
<td>3.33760</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Individual sports athletes</td>
<td>Team sports athletes</td>
<td>.22787</td>
<td>2.73616</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>-4.18417</td>
<td>2.39831</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td>Team sports athletes</td>
<td>Individual sports athletes</td>
<td>-.22787</td>
<td>2.73616</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-athlete</td>
<td>-4.41205</td>
<td>2.28125</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>Non-athlete</td>
<td>Individual sports athletes</td>
<td>4.18417</td>
<td>2.39831</td>
<td>0.085</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Team sports athletes</td>
<td>4.41205</td>
<td>2.28125</td>
<td>0.057</td>
</tr>
</tbody>
</table>

*. The mean difference is significant at the 0.05 level.

DISCUSSION

The results showed a significant difference in visual skills including focusing, tracking, sequencing, eye-hand coordination, and vergence of female athletes with non-athletes in individual and team sports. In the other words,
females of team athletes were superior in individual and team skills in Focusing and Tracking than non-athletes. In this regard, the results of the present research are consistent with some findings of studies (8-12, 20-27), while they were inconsistent with other findings (12). It seems that the results could be related to the kind of training, tools and different subjects and different age ranges (8).

Results showed that female individual and team sports athletes were better in focusing and tracking than non-athletes, individual sports athletes were better in sequencing than team sports athletes and non-athletes, and non-athletes were better in eye-hand coordination and vergence. However, in regards to visualization, no significant difference was observed between the three groups.

In this context, for an explanation of these findings that align with previous studies in relation to lead groups in matching skills (Focusing), the theory of integration of the visual attention, which has been suggested by Treisman (1980), could be used (28). This theory suggests that the visual search process takes more time that an individual focus on the desired area of his/her spotlights. Therefore, individual can more quickly determine targets and its location (2, 28).

In terms of motor learning, the differences in skills related to the effect of the transfer of learning can be understood due to the visual tracking. This can be due to increased processed simulations by the brain as a result of training and experience. This leads to an increase in speed of tracking motions, as well as a reduction of transfer time of vision stabilization, from one point to another in athletes (29). This difference can also be examined from the perspective of Optometry. During the tracking movements, saccade repression occurs and visual system tracking only processes movements from the first and last points effectively (25). As the tracking movements become faster, the duration of information suppression is dropped and more time is given for people to learn and process information. As a result, this helps to improve performance and tracking skills (30).

The results of this study revealed superiority in girls in individual athletic group when comparing the visual skills of vergence. The better performance of individual athletes in vergence skills, on the one hand, is because of their training (convergent and divergent eyes for following the ball of the opponents’ moves). Their skills are quite improved during practicing these skills; on the other hand, it seems that visual-motor skills are more involved in individual sports.

When explaining the differences in vergence of skills, these can also be examined from the perspective of motor development. The muscles of the eye lens play an important role in the control of eye movement and are the basis for binocular vision (vergence), particularly since binocular vision is one of the visual traits that is important for the motor function of athletes. Additionally, given that individual athletes in this study are constantly repeating and practicing these conditions, this leads to improved speed, coordination, endurance muscles of the eye lens and improvement of the vergence of the athletes in the individual athletes group (6, 31).

Additionally, the improvement of team athletes in sequence skills also seems to be due to focusing on the visual-perceptual skills, as well as repetition and practice and active visual memory in the total hours of training. This helps to remind the athlete of the learned techniques and tactics and to use them in emergencies, leading to improved sequence skills in these athletes than individual athletes. In general, this kind of exercise can also have positive effects on the two types of skills which result in a significant difference in the groups. On the other hand, the difference in the athlete's visual skills can be explained according to the theory of information processing. This theory considers the brain as a computer; therefore, it is said that it considers humans as the chains of processing calculating machines.

Central factors such as attention, memory, and visual, as well as environmental factors such as speed of nerve impulses, have significant effects on the speed of information processing and memory functions. In general, this is one of the reasons for the differences between high-speed memory functions and information processing functions in athletes than non-athletes. Because athletes, when remembering the numbers, categorize them at first and then organize them, this is why they act better in the call data memory. Since athletes regularly train, they can maintain their memory functions better. For one thing, exercise and sports activate the production and function of neurotransmitters in the brain. Exercise also increases the levels of

tissue oxidation, while oxygen plays an important role in the metabolism and energy system of the central nervous system (2, 6, 31).

The difference between groups in hand-eye coordination of visual skills can be due to the issue of freedom degrees that Bernstein had raised (1930, 1950). The theory is that less experienced people (non-athletes) tend to freeze non-essential parts of the body by reducing the number of freedom degrees, so that they can focus on the main aspects. However, experienced people (athletes) want to find the desired degree of freedom in accordance with their task performance (2).

On the other hand, statistical differences observed among athletes of team sports and individual sports and non-athletes in eye-hand coordination skills may, in part, be related to brain hemispheres. Studies have shown that exercise and physical activity can also cause changes in the brain in the field of sports. Brain MRIs of athletes have also shown that they have a peak performance of their brain in the left hemisphere and use the left hemisphere of their brains more. The left hemisphere includes features such as the performance information process and, while the right hemisphere is of a visual-spatial, three-dimensional orientation and coordination (32), these findings correspond with the results.

The lack of a significant difference in the visualization skills can be explained due to the nature of visual skills. Ferreira (2003) believes that visual skills comprise two categories of software skills that are acquired by practicing, and hardware skills that are genetic and are not affected by skills training (33). These skills are different, even among athletes. This means that some of these skills are improved due to performing sports skills (33, 34), while others are the same between athletes and non-athletes (35).

CONCLUSION

According to the results of previous research and the results of this study, it could be concluded that participation in sports is important for everyone. In addition to increasing physical capacity, it improves body control and social communication; it also has positive effects on visual information processing (perception, integrity and response). This indicates that changes in brain structure and neural communication leads to more effective and faster motor responses and provides a foundation for optimum health (4). It is worth recalling that visual skills are influenced by several factors such as physical fitness, intensity, and duration of exercise, the type of test, and testing time (21, 27, 36, 37).

The results of this study with respect to the objectives of talent identification, and the selection of players in different sports due to the nature of the field, are unique. Therefore, it is recommended that athletic trainers and training planners identify athletes with visual skills; also, due to the nature of the field, visual exercises related to these skills should be involved in the training programs, which can lead to better business vision system capabilities, skills and improved motor performance. However, in order to expand the research findings, more research is needed. It is suggested that future researches focus on a comprehensive knowledge of the factors that are involved in improving visual skills, as well as in order to compare the visual skills in athletes of individual and team sports and various posts in different fields. Unfortunately, applicable studies have not been conducted that confirm or exclude the research, which shows the importance and necessity of such research. However, more research is needed to clarify the results in this area and could examine the findings in the different samples and by further control of variables.

In conclusion, it should be noted that, in this study, with regard to control of the study variables such as fatigue, nutrition, stress at the time of the test, and the mental states of the participants, the rest of the participants had a direct influence on the performance that couldn’t be controlled by the researchers. The problem in interpreting the results and a comparison with other studies could also provide constraint.

APPLICABLE REMARKS

- Holding different courses and workshops to promote awareness of visual skills and their impact on performance and daily activities.
- The use of coaches and athletes from this test in conjunction with other clinical vision tests and the prevention of excessive costs.

ACKNOWLEDGMENT

This article is part of a Master’s thesis of Physical Education and Sport Sciences (ISM motor behavior) in 2014. The help given by Professor Kruger and all the students that assisted us in conducting this study is appreciated.

REFERENCES

11. Akarsu S, ÇALIŞKAN E, Dane S. Athletes have faster eye-hand visual reaction times and higher scores on visuospatial intelligence than nonathletes. Turkish Journal of Medical Sciences. 2009;39(6):871-4.