Liver ABCA1 Gene Expression in Male Rats: Effects of High-intensity Treadmill Running and Black Crataegus-pentaegyna (Siyah-Valik) Extraction

Abbass Ghanbari-Niaki*, Monireh Gholizadeh, Safieyh Ghanbari-Abarghooi, Fatemeh Roudbari, Mohammad Javad Chaichi

1. Exercise Biochemistry Division, Faculty of Physical Education and Sport Science, University of Mazandaran, Baboulsar, Iran.
2. Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Baboulsar, Iran.
3. Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Baboulsar, Iran.

ABSTRACT

The purpose of the current study was to investigate the effect of a high-intensity treadmill running (8 weeks) with or without aqueous extraction of black Crataegus-Pentaegyna (Siyah-Valik) on liver ABCA1 mRNA expression and plasma HDL-C, total, and direct bilirubin concentration in male rats. Twenty Wistar male rats (4-6 weeks old, 140-170 g weight) were used. Animals were randomly assigned into training (n =10) and control (n =10) groups and further divided into saline-control (SC, n=5), saline-training (ST, n=5), black Crataegus-Pentaegyna (Siyah-Valik) Control (SVC, n=5), and black Crataegus-Pentaegyna (Siyah-Valik)-training (SVT, n=5) groups. Training groups have performed a high-intensity running program (34 m/min on 0% grade, 60 min/day and 5 days/week) on a motor-driven treadmill for 8 weeks. Animals were orally fed with black Crataegus-Pentaegyna (Siyah-Valik) extraction (500 mg/kg body weight) and saline solution for last six weeks. A significant differences have found in liver ABCA1 gene expression between SVC and SVT (P<0.003) and between SVC with SC groups (P< 0.038). HDL-C levels were significantly (P<0.036) between groups. A higher HDL level was found in SV treated groups and between SVC and SC groups. The levels of bilirubin total and bilirubin direct remained unchanged.

The current results show that high-intensity treadmill running affected liver ABCA1 mRNA expression in different directions in saline (increase) and SV (decrease) treated animals. Findings also indicate an opposite pattern of change in saline and SV treated animals at rest. It seems the existence of opposite effect of exercise with supplementation of SV might be attributed to the suppression of ligands which is provided by SV supplementation at rest. This in turn might be also taking in account in lower liver ABCA1 mRNA expression and its related nuclear receptors such as LXR in SVT not ST groups.

Key Words: ATP-binding cassette protein-A1 (ABCA1), HDL-C, Male Rats, High-intensity running, Black Crataegus-Pentaegyna (Siyah-Valik).

Corresponding Author:
Abbass Ghanbari-Niaki
E-mail: ghanbara@umz.ac.ir
INTRODUCTION
Liver has well been recognized as a main organ in blood glucose regulation, and lipid and lipoprotein metabolism, short energy storage by deposition of excess blood glucose into glycogen, bile acid secretion, nitrogen fixation, ketogenesis, toxification, and HDL biogenesis (1-5). Regarding HDL biogenesis and its plasmatic formation, liver is accounted as a chief organ for a lipid-poor or lipid-free Apo lipoprotein type A (Apo-I) secretion into blood into blood circulation (6). The exercise has been shown to increase genes which are involved in HDL-C biogenesis and its plasmatic formation such as ABCA1 and ABCG1 genes. The responses of ATP-binding cassette protein transporters (ABCs) family member to different types of physical exercise in human and animal has also been investigated by several researchers (7-10). ATP-binding cassette protein transporters A, particularly, ABCA1 is a multispan molecule with high expression level in the heart and other tissues and upregulated by several factors such as cholesterol influx and physical activity (11). On the other hand, the role of various medicinal plants in reducing heart disease is well established. Crataegus (Valik) species is well known in phytotherapy for the treatment of many cardiovascular diseases (12). Carategus Pentaegyna (Sorkh valik) is the one of best known and favorite edible wild fruit of the Crataegus species, (Rosaceae) which is exist in Mazandaran and other Northern states of Iran. This fruit is believed to have some medicinal beneficial effect on cardiovascular function, blood pressure, and lipid metabolism. In Mazandaran province, this fruit is consumed freshly and as jam, vinegar, and sauce (13). In despite, some information about the effects of Crataegus species extraction (14). There is very less information about the effect of the black Crataegus Pentaegyna (Siyah-Valik) extraction on ABCA1 mRNA expression with or without a high-intensity treadmill running program. This study was conducted to evaluate of the liver ABCA1 mRNA expression response. The second purpose to see a possible change in ABCA1 could be accompanied with significant changes in plasma HDL, bilirubin total and direct concentrations to a high-intensity treadmill running program and black crataegus pentaegyna (Siyah-Valik) in male rat.

MATERIALS AND METHODS
Animals. All experiments involving animals were conducted according to the policy of Iranian convention for the protection of vertebrate animals used for experimental and other scientific purposes; the protocol was approved by the Ethics Committee of the Sciences, University of Mazandaran (UMZ) and Babol University of Medical Sciences (BUMS, Mazandaran, Iran). Twenty Wistar male rats (4-6 weeks old, 140-170 gr weight) were acquired from the Pasteur's Institute (Amol, Mazandaran), and maintained in the Central Animal House of the Faculty of Physical Education and Sports Science of UMZ. Five rats were housed per cage (46-L) with a 12-hour: 12-hour light-dark cycle Temperature and humidity were maintained at 22°C ± 1.4°C and 50% ± 5%, respectively. Diets (a pellet form) and water were provided ad libitum. Animals were randomly assigned into control (n =10) and training (n =10) groups. Rats were further divided into saline-control (SC, n=5), saline-training (ST, n=5), Black Crataegus - Pentaegyna (Siyah - Valik)-control, Valik - control (SVC, n =5), and Sorkh Valik - training (SVT) (n=5). The control groups remained sedentary; whereas the training groups underwent a high-intensity treadmill running program for 6 weeks (38 minutes) three times a week. No food or water was given 12 hours before sacrifice. All rats were anesthetized by an intraperitoneal injection of ketamine, and the abdomen was opened. Then, the liver was excised and stored in liquid nitrogen.
intensity (35m/min) treadmill running program.

**Plant Material.** The ripped fruit and well washed samples of red Crataegus - Pentaegyna (Sorkh - Valik) were collected from the Neka forest in the Mazandaran province of Iran. Fruits were dried in oven at 35° C for 4 days and fine powdered by using a. Plant Material was identified by herbarium collection in Department of Biology, Faculty of Basic Sciences, University of Mazandaran (UMZ) Baboulsar, and Mazandaran, Iran.

**Preparation of the Crataegus extraction.** The whole ripped and dried fruits of Crataegus-Pentaegyna were grounded in house electronic grinder to a fine powder. The extract was prepared according to the Cai et al (15). Rats were orally received a single dose (500 mg/kg of body weight or 10 ml/kg of body weight) of liquid extraction of Siyah-Valik at the end of daily exercise training session (16). The saline groups were treated with the same volume of saline solution.

**Liver Biopsy and plasma HDL-C, Total and Direct Bilirubin Concentrations.** Seventy-two hours after the last training session, rats were anesthetized with intra peritoneal administration of a mixture of ketamine (30– 50mg / kg body weight) and xylazine (3– 5mg / kg body weight). The liver was excised, cleaned, divided into two pieces, washed in ice cold saline, and immediately frozen in liquid nitrogen and stored at −80° C until RNA extraction. Blood was also collected in test tubes contain EDAT (1mg/mL) as anticoagulant, and immediately processed for plasma preparation, during a 15 min centrifugation at 3000 rpm. Plasma was stored at -80C too, for future analysis. Plasma High Density Lipoprotein (HDL) was determined by enzymatic colorimetric method (Pars Azmoun, Tehran, Iran); Plasma total bilirubin (BileT) was determined by enzymatic colorimetric method (Pars Azmoun, Tehran, Iran); intra-assay coefficient of variation and sensitivity of the method were 3.05% and 0.03 mg/dL, respectively. Plasma Direct bilirubin (BileD) was determined by enzymatic colorimetric method (Pars Azmoun, Tehran, Iran); intra-assay coefficient of variation and sensitivity of the method were 3.12% and 0.01 mg/dL, respectively.

**RNA, cDNA Synthesis and Real-time PCR.** Total RNA was extracted from 30 mg of liver tissue using RNA purification kits (QIAGEN, Cat.No: 71104). Complementary DNA (cDNA) was extended by using cDNA synthesis kit (QuantiTect Reverse Transcription Kit cDNA synthesis (Qiagen), Cat.No: 205310) according to the manufacturer’s instructions. Real-time quantitative PCR was performed using Quanti Fast SYBR Green PCR Kit (Cat. No. 204052; Qiagen, GmbH, Germany) in using 10μl reaction containing 1μl single-strand cDNA,5μl Master Mix, 1μl of the each forward and reverse primers and 2μl Transferee water. Expected fragment size and Oligonucleotide primer sequences for ABCA1, and GAPDH genes are F: 5׳-ACGAGATTGATGACCGCCTC, R: 5׳-GCATCCACCCCACTCTTC, and F: 5׳-GTGCCAGCCTCGTCTCATAG, R: 5׳-GACTGTGCCGTTGAACTTGC, Respectively. The PCR was carried out on BIO RAD (C1000 TM Thermal Cycler). Real time PCR system is listed in Table 1. Product specificity was confirmed in the initial experiments by 1.5 % agarose gel electrophoresis and routinely by melting curve analysis.

**Statistical Analysis.** The relative levels of mRNA were analyzed by using a comparative threshold cycle method (15). Data were normalized and normal distribution was found. A two way ANOVA
Effects of High Intensity Training on liver ABCA1 and Plasma variables


were employed and significance was accepted at P = 0.05. All findings were expressed as means ± SE and SPSS (Version 13; SPSS, Chicago, IL) software was used for data analysis.

<table>
<thead>
<tr>
<th>Table 1. Real-time Cycler Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steps</td>
</tr>
<tr>
<td>PCR initial activation step</td>
</tr>
<tr>
<td>Two-step cycling</td>
</tr>
<tr>
<td>Denaturation</td>
</tr>
<tr>
<td>45 Cycle Combined annealing/extension</td>
</tr>
<tr>
<td>Melting Curve</td>
</tr>
</tbody>
</table>

RESULTS

ABCA1 mRNA Expression. A significant differences was found in liver ABCA1 gene expression between SVC and SVT (P<0.003) and between SVC with SC groups (P< 0.038) (Fig.1).

Plasma Biochemical Variables. Data analysis revealed a significant differences between groups (F = 2.905, P<0.03). Using a suitable following post hoc test showed that plasma HDL-C levels were significantly (P<0.036) higher in SV treated rats when compared with S groups. However, a significant difference also was found between SVC and SC groups (Fig 2). The levels of bilirubin total and bilirubin direct remained unchanged (Table 2).

Figure1. Real-Time PCR of Liver ABCA1 Relative mRNA Expression in Wild-Type Male Rats. The results are expressed as mean ± SD. Each column is for five rats per group. SC: Saline-Control, ST: Saline- Training, SVC: Crataegus-Pentaegyna-Control (Siyah Valik), and SVT: Crataegus-Pentaegyna–Training (Siyah Valik).

<table>
<thead>
<tr>
<th>Table 2. Comparative changes Plasma Variables Concentration (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
</tr>
<tr>
<td>BileT, mg/dL</td>
</tr>
<tr>
<td>BileD mg/dL</td>
</tr>
</tbody>
</table>

The results are expressed as mean ± SD. Each column is for five rats per group. SC: Saline-Control, ST: Saline- Training, SVC: Crataegus-Pentaegyna-Control (Siyah Valik), and SVT: Crataegus-Pentaegyna–Training (Siyah Valik).
DISCUSSION

The results of the present study indicate that SV extraction was able to enhance liver ABCA1mRNA expression in our experimental condition. The other main findings of the current study were a higher ABCA1 mRNA expression in SV treated groups. The results also indicated that high-intensity treadmill running program with or without SV treatment had different impact on liver ABCA1mRNA expression. Another main finding was a higher plasma HDL-C in SVC group when compared with SC, ST, and SVT groups. It should be noted that on the basis of our Knowledge, this is the first report to demonstrate alterations of male rat liver ABCA1mRNA expression in response to a high intensity training and black Crataegus - Pentaegyna (Siyah - Valik) extraction. It is well known that ABCA1 is the initiator element of reverse cholesterol transport (RCT) process which plays a crucial role in HDL biogenesis, maturation, and its plasmatic formation. The effect of moderate intensity of treadmill running with moderate and long term (60, 90 min) for 6 and 12 weeks on ABCA1mRNA expression in rat liver, small intestine, and heart tissues have been previously reported by several investigators (8-10, 16). Our finding related to ABCA1mRNA expression in saline treated animals is in agreement with previous reports, but the results of SV trained rats is not in consistent with other reports. However, according to Ghanbari-Niaaki et al. (2013) using the same treadmill running protocol resulted in a similar pattern but not significant changes in rat heart ABCA1mRNA expression (8). It seems that the tendency of treadmill-running induced reduction in ABCA1mRNA expression is similar in both liver and heart tissues following the same amount of SV extraction. A higher level of ABCA1mRNA expression in liver with SV treatment at rest and a reduction following the treadmill running was a novel and interested finding. The antilipidemic, antioxidative, and lowering cholesterol effects of Crataegus species very well known (11, 12), but the information about the effect of black Crataegus-Pentaegyna (Siyah-valik) on ABCA1 mRNA at rest and training is lacking. It has been suggested that the activation of PPAR-γ
Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables


Effects of High Intensity Training on liver ABCA1 and Plasma variables

Effects of High Intensity Training on liver ABCA1 and Plasma variables 43


22. Yu YE. The effects of antioxidants kaempferol and ascorbic acid on liver X receptor alpha (LXR-α) in TNF-α stimulated human hepatocarcinoma HepG2 cells: Universiti Tunku Abdul Rahman (UTAR); 2011.

پاسخ زن ABCA1 کبدی در رت های نر: اثر تمرین شدید و عصاره خام گراتاگوس (سیاه و لیک)

اعباس قنبری نیاکی،*، منیره قلی‌زاده، اصفه قنبری ابرقی، آفاطه رودباری، محمودجواد چایچی

چکیده

فایل‌های کبدی ورژن منظم و بپورمندی از داروها گیاهی بر سوخت و ساز مناسب گوی از و عصاره لیک در مورد تاثیر دردی و رقابی انجام شد. از طریق نوعی از طریق‌های مصرفی کلمات از گروه ABCA1 تولید خواهد شد، و از طریق طیوان اطلاعات کافی از مکانیسم‌های درک در این فرآیند در دسترس نیست. نما هندسی از پژوهش حاضر، بررسی اثر تمرين شدید روی نواورگان (۲۴ متر در دی‌پی و شیب صفر درجه) با و بدون عصاره لیک بر بیان علائم مصرفی به و سطح خاکی در برنازی نرسیده است. هدف الشامیانی داشته‌اند بر در نکات سطح و تغییرات روی نواورگان دوباره. محلول‌های خاکی و عصاره به به باید ۳۱۷ هفته دارای توانایی داشته باشد. ۲۳ ساعت سپس از از دیگر جمله تمرين نزولات قربانی و جهت اندوز گری متغیر های مورد نظر بافت کبد به سرعت جدی تميز و به سرعت در تنظیم مابع مجدید. تحلیل داده‌های مربوط به بیان نسبی زن ABCA1 در بافت کبد اختلاف معنی‌داری ABCA1 را بین گروه‌های تمرين و نمی‌تواند داشته باشد. افزایش سطح HDL در گروه‌های سنگین در مقایسه با شاهد ممکن دارد (به ترتیب: ۰/۱<0.۰۱ و ۰/۰۱<0.۰۰۱). بود در حالیکه در سطح بیلی‌روین و T یافته شده نشان ممکن دارد. نتایج و آن‌ها در گروه‌های درک‌گیر اثرات می‌گذارد. داده‌ها همچنین حاکی از آن است گروه‌های سنگین HDL به سطح بافت ABCA1. می‌تواند قدرت فعال باشد یا موجب افزایش سطح بیلی‌روین ۱ ABCA1 و افزایش HDL گردید. 

وژگان کلیدی: HDL, ABCA1, بیلی‌روین, تمرین ورژن و عصاره لیک.

* متنبری نیاکی 
ghanbara@umz.ac.ir

تاریخ دریافت: ۱۳۹۲/۰۹/۱۷ 
تاریخ پذیرش: ۱۳۹۳/۰۱/۱۰

poster کدی و متغیرهای پلاسماتی ABCA1