year 10, Issue 2 (Summer 2022)                   Ann Appl Sport Sci 2022, 10(2): 0-0 | Back to browse issues page

XML Print

1- Center for Physiotherapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia
2- Clinical and Rehabilitation Exercise Research Group, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia
3- Center for Physiotherapy Studies, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia ,
Abstract:   (2762 Views)
Background. This study investigated the effects of short-duration high-intensity simulation of soccer fatigue on the dynamic balance and isokinetic strength of the lower limbs in youth soccer players.
Methods. Thirty-nine youth soccer players completed a high-intensity fatigue simulation in 5-min. The participants performed tests on dynamic balance and isokinetic strength before the fatigue simulation (PRE), immediately after simulation (POST5), and 20 min (POST20) and 35 min (POST35) after simulation. Dynamic balance was measured using the Y-Balance test for both legs in the anterior, posteromedial (PM), and posterolateral (PL) directions. The muscle strength of the lower limb was measured using the maximal isokinetic contraction of the dominant leg only.
Results. Dynamic balance was significantly reduced after stimulation in all directions for both legs (P<0.005). Significant reduction in the eccentric hamstring, concentric hamstring, and concentric quadriceps peak torques were also observed (P<0.05). However, no significant reductions were found in the functional hamstring/quadriceps ratio and conventional hamstring/quadriceps ratio (P>0.05).
Conclusion. Fatigue influences dynamic balance, hamstrings, and quadriceps strength which may have implications for higher risk of knee injury in youth players.
Full-Text [PDF 366 kb]   (1049 Downloads)    
  • Fatigue simulation for 5-min is practically used in the clinical setting according to the time consumption.

Type of Study: Original Article | Subject: Kinesiology and Sport Injuries
Received: 2021/06/26 | Accepted: 2021/08/22

1. Faude O, Rossler R, Junge A. Football injuries in children and adolescent players: are there clues for prevention? Sports Med. 2013;43(9):819-837. [DOI:10.1007/s40279-013-0061-x] [PMID]
2. Delextrat A, Gregory J, Cohen D. The use of the functional H:Q ratio to assess fatigue in soccer. Int J Sports Med. 2010;31(3):192-197. [DOI:10.1055/s-0029-1243642] [PMID]
3. Woods C, Hawkins R, Hulse M, Hodson A. The Football Association Medical Research Programme: an audit of injuries in professional football-analysis of preseason injuries. Br J Sports Med. 2002;36(6):436-441; discussion 441. [DOI:10.1136/bjsm.36.6.436] [PMID] [PMCID]
4. Paillard T. Effects of general and local fatigue on postural control: a review. Neurosci Biobehav Rev. 2012;36(1):162-176. [DOI:10.1016/j.neubiorev.2011.05.009] [PMID]
5. Greig M. Concurrent changes in eccentric hamstring strength and knee joint kinematics induced by soccer-specific fatigue. Phys Ther Sport. 2019;37:21-26. [DOI:10.1016/j.ptsp.2019.02.003] [PMID]
6. Small K, McNaughton L, Greig M, Lovell R. The effects of multidirectional soccer-specific fatigue on markers of hamstring injury risk. J Sci Med Sport. 2010;13(1):120-125. [DOI:10.1016/j.jsams.2008.08.005] [PMID]
7. Lee M, Sim S, Jiemin Y. Y-Balance Test But Not Functional Movement Screen Scores Are Associated With Peak Knee Valgus Moments During Unplanned Sidestepping: Implications For Assessing Anterior Cruciate Ligament Injury Risk. Int Societ Biomechanic Sport. 2017;35(1):77-80.
8. Gkrilias P, Zavvos A, Fousekis K, Billis E, Matzaroglou C, Tsepis E. Dynamic balance asymmetries in pre-season injury-prevention screening in healthy young soccer players using the Modified Star Excursion Balance Test-a pilot study. J Phys Ther Sci. 2018;30(9):1141-1144. [DOI:10.1589/jpts.30.1141] [PMID] [PMCID]
9. Teixeira LA, de Oliveira DL, Romano RG, Correa SC. Leg preference and interlateral asymmetry of balance stability in soccer players. Res Q Exerc Sport. 2011;82(1):21-27. [DOI:10.1080/02701367.2011.10599718] [PMID]
10. Bossuyt FM, Garcia-Pinillos F, Raja Azidin RM, Vanrenterghem J, Robinson MA. The Utility of a High-intensity Exercise Protocol to Prospectively Assess ACL Injury Risk. Int J Sports Med. 2016;37(2):125-133. [DOI:10.1055/s-0035-1555930] [PMID]
11. Delextrat A, Baker J, Cohen DD, Clarke ND. Effect of a simulated soccer match on the functional hamstrings-to-quadriceps ratio in amateur female players. Scand J Med Sci Sports. 2013;23(4):478-486. [DOI:10.1111/j.1600-0838.2011.01415.x] [PMID]
12. Lehnert M, Croix MS, Xaverova Z, Botek M, Varekova R, Zaatar A, et al. Changes in Injury Risk Mechanisms after Soccer-Specific Fatigue in Male Youth Soccer Players. J Hum Kinet. 2018;62:33-42. [DOI:10.1515/hukin-2017-0157] [PMID] [PMCID]
13. Pinto MD, Blazevich AJ, Andersen LL, Mil-Homens P, Pinto RS. Hamstring-to-quadriceps fatigue ratio offers new and different muscle function information than the conventional non-fatigued ratio. Scand J Med Sci Sports. 2018;28(1):282-293. [DOI:10.1111/sms.12891] [PMID]
14. Cohen DD, Zhao B, Okwera B, Matthews MJ, Delextrat A. Angle-specific eccentric hamstring fatigue after simulated soccer. Int J Sports Physiol Perform. 2015;10(3):325-331. [DOI:10.1123/ijspp.2014-0088] [PMID]
15. Nicholas CW, Nuttall FE, Williams C. The Loughborough Intermittent Shuttle Test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97-104. [DOI:10.1080/026404100365162] [PMID]
16. Stone KJ, Oliver JL, Hughes MG, Stembridge MR, Newcombe DJ, Meyers RW. Development of a soccer simulation protocol to include repeated sprints and agility. Int J Sports Physiol Perform. 2011;6(3):427-431. [DOI:10.1123/ijspp.6.3.427] [PMID]
17. Russell M, Benton D, Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J Sci Med Sport. 2012;15(4):348-354. [DOI:10.1016/j.jsams.2011.12.006] [PMID]
18. De Ste Croix MB, Priestley AM, Lloyd RS, Oliver JL. ACL injury risk in elite female youth soccer: Changes in neuromuscular control of the knee following soccer-specific fatigue. Scand J Med Sci Sports. 2015;25(5):e531-538. [DOI:10.1111/sms.12355] [PMID]
19. Smith MR, Coutts AJ, Merlini M, Deprez D, Lenoir M, Marcora SM. Mental Fatigue Impairs Soccer-Specific Physical and Technical Performance. Med Sci Sports Exerc. 2016;48(2):267-276. [DOI:10.1249/MSS.0000000000000762] [PMID]
20. Bishop D, Spencer M, Duffield R, Lawrence S. The validity of a repeated sprint ability test. J Sci Med Sport Med Australia. 2001;4(1):19-29. [DOI:10.1016/S1440-2440(01)80004-9]
21. Fleiss J. Reliability of measurement. The design and analysis of clinical experiments. New York: Wiley; 1986. p. 1-32.
22. Balsalobre-Fernandez C, Glaister M, Lockey RA. The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci. 2015;33(15):1574-1579. [DOI:10.1080/02640414.2014.996184] [PMID]
23. Gribble PA, Hertel J. Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil. 2004;85(4):589-592. [DOI:10.1016/j.apmr.2003.06.031] [PMID]
24. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91(1):22-29. [DOI:10.1007/s00421-003-0933-0] [PMID]
25. Zawadzki J, Bober T, Siemieński A. Validity analysis of the Biodex System 3 dynamometer under static and isokinetic conditions. Acta Bioengineer Biomech. 2010;12(4):25-32.
26. Daneshjoo A, Mokhtar AH, Rahnama N, Yusof A. The effects of injury preventive warm-up programs on knee strength ratio in young male professional soccer players. PLoS One. 2012;7(12):e50979. [DOI:10.1371/journal.pone.0050979] [PMID] [PMCID]
27. Adams R. Revised Physical Activity Readiness Questionnaire. Canada Famil Physic Med Famil Canada. 1999;45:992-1005.
28. Ben Othman A, Chaouachi A, Hammami R, Chaouachi MM, Kasmi S, Behm DG. Evidence of nonlocal muscle fatigue in male youth. Appl Physiol Nutr Metab. 2017;42(3):229-237. [DOI:10.1139/apnm-2016-0400] [PMID]
29. Pau M, Mereu F, Melis M, Leban B, Corona F, Ibba G. Dynamic balance is impaired after a match in young elite soccer players. Phys Ther Sport. 2016;22:11-15. [DOI:10.1016/j.ptsp.2016.05.008] [PMID]
30. Taylor JL, Gandevia SC. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol (1985). 2008;104(2):542-550. [DOI:10.1152/japplphysiol.01053.2007] [PMID]
31. Zech A, Steib S, Hentschke C, Eckhardt H, Pfeifer K. Effects of localized and general fatigue on static and dynamic postural control in male team handball athletes. J Strength Cond Res. 2012;26(4):1162-1168. [DOI:10.1519/JSC.0b013e31822dfbbb] [PMID]
32. Johnston W, Dolan K, Reid N, Coughlan GF, Caulfield B. Investigating the effects of maximal anaerobic fatigue on dynamic postural control using the Y-Balance Test. J Sci Med Sport. 2018;21(1):103-108. [DOI:10.1016/j.jsams.2017.06.007] [PMID]
33. Attarzadeh Hosseini S, Hejazi K. The Effect of Fatigue Protocol on Dynamic Balance in Soccer Players with Functional Ankle Instability. Australia J Basic Appl Sci. 2013;2013(7):2.
34. Whyte E, Burke A, White E, Moran K. A high-intensity, intermittent exercise protocol and dynamic postural control in men and women. J Athl Train. 2015;50(4):392-399. [DOI:10.4085/1062-6050-49.6.08] [PMID] [PMCID]
35. Barone R, Macaluso F, Traina M, Leonardi V, Farina F, Di Felice V. Soccer players have a better standing balance in non-dominant one-legged stance. Open Access J Sports Med. 2010;2:1-6. [DOI:10.2147/OAJSM.S12593] [PMID] [PMCID]
36. Khan MA, Moiz JA, Raza S, Verma S, Shareef MY, Anwer S, et al. Physical and balance performance following exercise induced muscle damage in male soccer players. J Phys Ther Sci. 2016;28(10):2942-2949. [DOI:10.1589/jpts.28.2942] [PMID] [PMCID]
37. Hesari AF, Maoud G, Ortakand SM, Nodehi MA, Nikolaïdis P. The Relationship Between Star Excursion Balance Test and Lower Extremity Strength, Range of Motion and Anthropometric Characteristics. Med Sportiva. 2013;17(1):24-28.
38. Coratella G, Bellin G, Beato M, Schena F. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps. J Sports Sci. 2015;33(12):1276-1282. [DOI:10.1080/02640414.2014.986185] [PMID]
39. Greig M. The influence of soccer-specific fatigue on peak isokinetic torque production of the knee flexors and extensors. Am J Sports Med. 2008;36(7):1403-1409. [DOI:10.1177/0363546508314413] [PMID]
40. Garrett WE, Jr., Califf JC, Bassett FH, 3rd. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984;12(2):98-103. [DOI:10.1177/036354658401200202] [PMID]
41. Rahnama N, Reilly T, Lees A, Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J Sports Sci. 2003;21(11):933-942. [DOI:10.1080/0264041031000140428] [PMID]
42. Olyaei GR, Hadian MR, Talebian S, Bagheri H, Malmir K, Olyaei M. The effect of muscle fatigue on knee flexor to extensor torque ratios and knee dynamic stability. Arabian J Sci Engineer. 2006;31(2):121-127.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.