year 5, Issue 3 (Autumn 2017)                   Ann. Appl. Sport Sci 2017, 5(3): 1-3 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arslan K S, Akpunar F, Sercan C, Kapıcı S, Ulucan K. SLC2A4 Polymorphisms Can Be a New Molecular Biomarker for Sports Genomics. Ann. Appl. Sport Sci. 2017; 5 (3) :1-3
URL: http://aassjournal.com/article-1-485-en.html
1- Üsküdar University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
2- Marmara University, Faculty of Medical Biology and Genetics, Department of Medical biology and Genetics, Istanbul, Turkey
3- MSc Marmara University, Faculty of Medical Biology and Genetics, Department of Medical biology and Genetics, Istanbul, Turkey
4- MSc Üsküdar University, Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
5- Associate Professor Marmara University, Faculty of Medical Biology and Genetics, Department of Medical biology and Genetics, Istanbul, Turkey , korkutulucan@hotmail.com
Abstract:   (2272 Views)
"SLC2A4 Polymorphisms Can Be a New Molecular Biomarker for Sports Genomics" is an "Editorial Article" and hasn't abstract.
Full-Text [PDF 265 kb]   (680 Downloads)    
 
 
APPLICABLE REMARKS
  • Athlete- sedentary, national athlete- elite athlete studies and comparison of the related SNPs in athletes from different sports types will be very informative studies in the terms of sports genomics. Therefore, future analyses of SLC2A4 polymorphisms and GLUT4 metabolism in athletes in different sports types will help to clarify the importance of the related SNPs in determining athletic performance.

Type of Study: Editorial | Subject: Sport Physiology and its related branches
Received: 2017/02/1 | Accepted: 2017/07/10 | Published: 2017/08/13

References
1. Ulucan K, Biyik B, Kapici S, Sercan C, Yilmaz O, Catal T. Alpha-actinin-3 R577X Polymorphism Profile of Turkish Professional Hip-Hop and Latin Dancers. Annals of Applied Sport Science. 2016;4(4):1-6. [DOI:10.18869/acadpub.aassjournal.4.4.1]
2. Ulucan K, Göle S. ACE I/D polymorphism determination in Turkish elite wind-surfers. Sport Science Review. 2014;23(1-2):79-84. [DOI:10.2478/ssr-2014-0005]
3. Elbrink J, Bihler I. Membrane transport: its relation to cellular metabolic rates. Science (New York, NY). 1975;188(4194):1177-84. [DOI:10.1126/science.1096301]
4. Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Molecular membrane biology. 2001;18(4):247-56. [DOI:10.1080/09687680110090456]
5. Stuart CA, Wen G, Gustafson WC, Thompson EA. Comparison of GLUT1, GLUT3, and GLUT4 mRNA and the subcellular distribution of their proteins in normal human muscle. Metabolism. 2000;49(12):1604-9. [DOI:10.1053/meta.2000.18559] [PMID]
6. Wood IS, Hunter L, Trayhurn P. Expression of Class III facilitative glucose transporter genes (GLUT-10 and GLUT-12) in mouse and human adipose tissues. Biochem Biophys Res Commun. 2003;308(1):43-9. [DOI:10.1016/S0006-291X(03)01322-6]
7. Wood IS, Trayhurn P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. The British journal of nutrition. 2003;89(1):3-9. [DOI:10.1079/BJN2002763] [PMID]
8. Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. The Journal of clinical investigation. 2006;116(7):1767-75. [DOI:10.1172/JCI29027] [PMID] [PMCID]
9. Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda, Md). 2005;20:260-70. [DOI:10.1152/physiol.00012.2005] [PMID]
10. Ryder JW, Kawano Y, Galuska D, Fahlman R, Wallberg-Henriksson H, Charron MJ, et al. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1999;13(15):2246-56. [PMID]
11. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nature medicine. 2000;6(8):924-8. [DOI:10.1038/78693] [PMID]
12. Fueger PT, Li CY, Ayala JE, Shearer J, Bracy DP, Charron MJ, et al. Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J Physiol. 2007;582(Pt 2):801-12. [DOI:10.1113/jphysiol.2007.132902] [PMID] [PMCID]
13. Greiwe JS, Hickner RC, Hansen PA, Racette SB, Chen MM, Holloszy JO. Effects of endurance exercise training on muscle glycogen accumulation in humans. Journal of applied physiology (Bethesda, Md : 1985). 1999;87(1):222-6. [DOI:10.1152/jappl.1999.87.1.222] [PMID]
14. Malodobra-Mazur M, Bednarska-Chabowska D, Olewinski R, Chmielecki Z, Adamiec R, Dobosz T. Single nucleotide polymorphisms in 5\'-UTR of the SLC2A4 gene regulate solute carrier family 2 member 4 gene expression in visceral adipose tissue. Gene. 2016;576(1 Pt 3):499-504. [DOI:10.1016/j.gene.2015.10.067] [PMID]
15. Xia X, Hu Y, Xu L, Chen T. A functional promoter polymorphism of SLC2A4 is associated with aerobic endurance in a Chinese population. European journal of sport science. 2014;14(1):53-9. [DOI:10.1080/17461391.2012.726652] [PMID]

Add your comments about this article : Your username or Email:
Write the security code in the box

Send email to the article author


© 2017 All Rights Reserved | Annals of Applied Sport Science

Designed & Developed by : Yektaweb