year 10, Issue 1 (Spring 2022)                   Ann Appl Sport Sci 2022, 10(1): 0-0 | Back to browse issues page


XML Print


1- Department of Physical Therapy for Musculoskeletal Disorders and Its Surgery, Faculty of Physical Therapy, Kafrelsheikh University, Kafr Elsheikh, Egypt
2- 2Department of Physical Therapy for Musculoskeletal Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt. Faculty of Physical Therapy, Nahda University, Beni Sueif, Egypt
3- Clinical Neurophysiology Unit, Kasr Alainy Medical School, Cairo University, Cairo, Egypt
4- Department of Information Technology, Faculty of Computers and information, Kafrelsheikh University, Kafrelsheikh, Egypt
5- Department of Physical Therapy for Musculoskeletal Disorders and Its Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
6- Department of Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Cairo, Egypt
7- Department of Biomechanics, Faculty of Physical Therapy, Cairo University, Cairo, Egypt , Hamada.ahmed@pt.cu.edu.eg
8- Department of Physical Therapy for Neuromuscular Disorders and its surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
Abstract:   (2480 Views)
Background. Patellofemoral osteoarthritis (PF OA) is a leading cause of significant pain and disability of the knee joint. Stair climbing dysfunction is commonly reported in this cohort. Objectives. To compare the temporal muscle activation between females with PF OA and healthy controls during stair ascent and decide whether there is a link between altered core activity and Patellofemoral osteoarthritis. Methods. A comparative observational study was conducted on 31 females with PF OA and 11 healthy ones. The electromyographic onset times of vasti, gluteus medius (GM), multifidus, and transversus abdominus (TrA) muscles were measured during the initiation of the stair ascending task. Results. A non-significant difference was detected between females with PF OA and controls regarding the onset times of all tested muscles except for the multifidus muscle, which significantly delayed activation in the PF OA group. Conclusion. Females with patellofemoral osteoarthritis showed a significantly delayed multifidus activation during ascending stairs which indicated the neuromotor dysfunction of core muscles compared to healthy controls. Core stability may be of clinical significance in managing patients with patellofemoral osteoarthritis. Prospective longitudinal studies are recommended for prioritizing the dysfunction.
Full-Text [PDF 383 kb]   (935 Downloads)    
 
 
APPLICABLE REMARKS
  • Not all patients with patellofemoral osteoarthritis have deficits in muscles around the knee joint.
  • Physical therapists should pay attention to mechanical deficits of all parts of the kinetic chain, not just the knee joint, when assessing patients with anterior knee pain.
  • Core stability exercise might effectively reduce pain in patients with patellofemoral arthritis.

Type of Study: Original Article | Subject: Kinesiology and Sport Injuries
Received: 2021/03/6 | Accepted: 2021/05/15

References
1. Hinman RS, Lentzos J, Vicenzino B, Crossley KM. Is patellofemoral osteoarthritis common in middle-aged people with chronic patellofemoral pain? Arthritis Care Res (Hoboken). 2014;66(8):1252-1257. [DOI:10.1002/acr.22274] [PMID]
2. Duncan R, Peat G, Thomas E, Wood L, Hay E, Croft P. Does isolated patellofemoral osteoarthritis matter? Osteoarthritis Cartilage. 2009;17(9):1151-1155. [DOI:10.1016/j.joca.2009.03.016] [PMID]
3. Nuzhat S, Aiman A, Gull S, Bhat I, Hamid P. Metastatic Lesions Involving Bone Marrow: 16-Year Analytical Study at a Tertiary Care Centre. Int J Current Res Rev. 2021;13(5):83-86. [DOI:10.31782/IJCRR.2021.13527]
4. Thomas MJ, Wood L, Selfe J, Peat G. Anterior knee pain in younger adults as a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC Musculoskelet Disord. 2010;11:201. [DOI:10.1186/1471-2474-11-201] [PMID] [PMCID]
5. Wyndow N, Collins N, Vicenzino B, Tucker K, Crossley K. Is There a Biomechanical Link Between Patellofemoral Pain and Osteoarthritis? A Narrative Review. Sports Med. 2016;46(12):1797-1808. [DOI:10.1007/s40279-016-0545-6] [PMID]
6. Hart HF, Stefanik JJ, Wyndow N, Machotka Z, Crossley KM. The prevalence of radiographic and MRI-defined patellofemoral osteoarthritis and structural pathology: a systematic review and meta-analysis. Br J Sports Med. 2017;51(16):1195-1208. [DOI:10.1136/bjsports-2017-097515] [PMID]
7. Kobayashi S, Pappas E, Fransen M, Refshauge K, Simic M. The prevalence of patellofemoral osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2016;24(10):1697-1707. [DOI:10.1016/j.joca.2016.05.011] [PMID]
8. Smith BE, Moffatt F, Hendrick P, Bateman M, Rathleff MS, Selfe J, et al. The experience of living with patellofemoral pain-loss, confusion and fear-avoidance: a UK qualitative study. BMJ Open. 2018;8(1):e018624. [DOI:10.1136/bmjopen-2017-018624] [PMID] [PMCID]
9. Collins NJ, Oei EHG, de Kanter JL, Vicenzino B, Crossley KM. Prevalence of Radiographic and Magnetic Resonance Imaging Features of Patellofemoral Osteoarthritis in Young and Middle-Aged Adults With Persistent Patellofemoral Pain. Arthritis Care Res (Hoboken). 2019;71(8):1068-1073. [DOI:10.1002/acr.23726] [PMID]
10. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189-198. doi: 10.2165/00007256-200636030-00001 pmid: 16526831 [DOI:10.2165/00007256-200636030-00001] [PMID]
11. Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368-373. [DOI:10.1177/0363546506297909] [PMID]
12. Fok LA, Schache AG, Crossley KM, Lin YC, Pandy MG. Patellofemoral joint loading during stair ambulation in people with patellofemoral osteoarthritis. Arthritis Rheum. 2013;65(8):2059-2069. [DOI:10.1002/art.38025] [PMID]
13. Seeley MK, Son SJ, Kim H, Hopkins JT. Walking mechanics for patellofemoral pain subjects with similar self-reported pain levels can differ based upon neuromuscular activation. Gait Posture. 2017;53:48-54. [DOI:10.1016/j.gaitpost.2017.01.005] [PMID]
14. Brindle TJ, Mattacola C, McCrory J. Electromyographic changes in the gluteus medius during stair ascent and descent in subjects with anterior knee pain. Knee Surg Sports Traumatol Arthrosc. 2003;11(4):244-251. [DOI:10.1007/s00167-003-0353-z] [PMID]
15. Cowan SM, Crossley KM, Bennell KL. Altered hip and trunk muscle function in individuals with patellofemoral pain. Br J Sports Med. 2009;43(8):584-588. [DOI:10.1136/bjsm.2008.053553] [PMID]
16. Aminaka N, Pietrosimone BG, Armstrong CW, Meszaros A, Gribble PA. Patellofemoral pain syndrome alters neuromuscular control and kinetics during stair ambulation. J Electromyogr Kinesiol. 2011;21(4):645-651. [DOI:10.1016/j.jelekin.2011.03.007] [PMID]
17. Bolgla L, Malone T, Umberger B, Uhl T. Comparison of hip and knee strength and neuromuscular activity in subjects with and without patellofemoral pain syndrome. Int J Sport Physic Therap. 2011;6(4):285-296.
18. Briani RV, Pazzinatto MF, De Oliveira Silva D, Azevedo FM. Different pain responses to distinct levels of physical activity in women with patellofemoral pain. Braz J Phys Ther. 2017;21(2):138-143. [DOI:10.1016/j.bjpt.2017.03.009] [PMID] [PMCID]
19. Motealleh A, Maroufi N, Sarrafzadeh J, Sanjari M, Salehi N. Comparative evaluation of core and knee extensor mechanism muscle activation patterns in a stair stepping task in healthy controls and patellofemoral pain patients. J Rehabilit Sci Res. 2014;1:84-91.
20. Dorosti R, Ghasemi M, Kalantari K, Baghban A. Comparison of electrical activity of core stability muscles of trunk and knee muscles in people with and without patellofemoral pain syndrome during stair-stepping. J Clinic Physiotherap Res. 2017;2(4):169-176.
21. Wyndow N, Crossley KM, Stafford R, Vicenzino B, Collins NJ, Tucker K. Neuromotor control during stair ambulation in individuals with patellofemoral osteoarthritis compared to asymptomatic controls. Gait Posture. 2019;71:92-97. [DOI:10.1016/j.gaitpost.2019.03.029] [PMID]
22. Hart HF, Ackland DC, Pandy MG, Crossley KM. Quadriceps volumes are reduced in people with patellofemoral joint osteoarthritis. Osteoarthritis Cartilage. 2012;20(8):863-868. [DOI:10.1016/j.joca.2012.04.009] [PMID]
23. Crossley KM, Dorn TW, Ozturk H, van den Noort J, Schache AG, Pandy MG. Altered hip muscle forces during gait in people with patellofemoral osteoarthritis. Osteoarthritis Cartilage. 2012;20(11):1243-1249. [DOI:10.1016/j.joca.2012.07.011] [PMID]
24. Ackland DC, Denton M, Schache AG, Pandy MG, Crossley KM. Hip abductor muscle volumes are smaller in individuals affected by patellofemoral joint osteoarthritis. Osteoarthritis Cartilage. 2019;27(2):266-272. [DOI:10.1016/j.joca.2018.09.013] [PMID]
25. Pohl MB, Patel C, Wiley JP, Ferber R. Gait biomechanics and hip muscular strength in patients with patellofemoral osteoarthritis. Gait Posture. 2013;37(3):440-444. [DOI:10.1016/j.gaitpost.2012.08.017] [PMID]
26. Collins NJ, Hinman RS, Menz HB, Crossley KM. Immediate effects of foot orthoses on pain during functional tasks in people with patellofemoral osteoarthritis: A cross-over, proof-of-concept study. Knee. 2017;24(1):76-81. [DOI:10.1016/j.knee.2016.09.016] [PMID]
27. Crossley KM, Vicenzino B, Pandy MG, Schache AG, Hinman RS. Targeted physiotherapy for patellofemoral joint osteoarthritis: a protocol for a randomised, single-blind controlled trial. BMC Musculoskelet Disord. 2008;9:122. [DOI:10.1186/1471-2474-9-122] [PMID] [PMCID]
28. Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH, et al. Studies comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manage. 2011;41(6):1073-1093. [DOI:10.1016/j.jpainsymman.2010.08.016] [PMID]
29. Felson DT, Niu J, Guermazi A, Sack B, Aliabadi P. Defining radiographic incidence and progression of knee osteoarthritis: suggested modifications of the Kellgren and Lawrence scale. Ann Rheum Dis. 2011;70(11):1884-1886. [DOI:10.1136/ard.2011.155119] [PMID] [PMCID]
30. Saad MC, Felicio LR, Masullo Cde L, Liporaci RF, Bevilaqua-Grossi D. Analysis of the center of pressure displacement, ground reaction force and muscular activity during step exercises. J Electromyogr Kinesiol. 2011;21(5):712-718. [DOI:10.1016/j.jelekin.2011.07.014] [PMID]
31. Park KM, Kim SY, Oh DW. Effects of the pelvic compression belt on gluteus medius, quadratus lumborum, and lumbar multifidus activities during side-lying hip abduction. J Electromyogr Kinesiol. 2010;20(6):1141-1145. [DOI:10.1016/j.jelekin.2010.05.009] [PMID]
32. Kellis E, Kouvelioti V. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J Electromyogr Kinesiol. 2009;19(1):55-64. [DOI:10.1016/j.jelekin.2007.08.002] [PMID]
33. Boling MC, Bolgla LA, Mattacola CG, Uhl TL, Hosey RG. Outcomes of a weight-bearing rehabilitation program for patients diagnosed with patellofemoral pain syndrome. Arch Phys Med Rehabil. 2006;87(11):1428-1435. [DOI:10.1016/j.apmr.2006.07.264] [PMID]
34. Ekstrom RA, Osborn RW, Hauer PL. Surface electromyographic analysis of the low back muscles during rehabilitation exercises. J Orthop Sports Phys Ther. 2008;38(12):736-745. [DOI:10.2519/jospt.2008.2865] [PMID]
35. Boudreau S, Farina D, Kongstad L, Buus D, Redder J, Sverrisdottir E, et al. The relative timing of trunk muscle activation is retained in response to unanticipated postural-perturbations during acute low back pain. Exp Brain Res. 2011;210(2):259-267. [DOI:10.1007/s00221-011-2629-8] [PMID] [PMCID]
36. Marshall P, Murphy B. The validity and reliability of surface EMG to assess the neuromuscular response of the abdominal muscles to rapid limb movement. J Electromyograph Kinesiol. 2003;13(5):477-489. [DOI:10.1016/S1050-6411(03)00027-0]
37. Jordan K, Challis JH, Newell KM. Walking speed influences on gait cycle variability. Gait Posture. 2007;26(1):128-134. [DOI:10.1016/j.gaitpost.2006.08.010] [PMID]
38. Cowan SM, Bennell KL, Hodges PW, Crossley KM, McConnell J. Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil. 2001;82(2):183-189. [DOI:10.1053/apmr.2001.19022] [PMID]
39. Rathleff MS, Samani A, Olesen JL, Roos EM, Rasmussen S, Christensen BH, et al. Neuromuscular activity and knee kinematics in adolescents with patellofemoral pain. Med Sci Sports Exerc. 2013;45(9):1730-1739. [DOI:10.1249/MSS.0b013e318292be30] [PMID]
40. McClinton S, Donatell G, Weir J, Heiderscheit B. Influence of step height on quadriceps onset timing and activation during stair ascent in individuals with patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2007;37(5):239-244. [DOI:10.2519/jospt.2007.2421] [PMID]
41. Cavazzuti L, Merlo A, Orlandi F, Campanini I. Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Gait Posture. 2010;32(3):290-295. [DOI:10.1016/j.gaitpost.2010.06.025] [PMID]
42. de Almeida Britto A, de Souza Muniz M, Nadal J. Electromyographic activity of the lower limb in runners with anterior knee pain while running. Res Biomed Eng "Epub ahead of print". 2021. [DOI:10.1007/s42600-021-00128-5]
43. Hughes G, Dally N. Gender difference in lower limb muscle activity during landing and rapid change of direction. Sci Sport. 2015;30(3):163-168. [DOI:10.1016/j.scispo.2015.02.009]
44. Peng YL, Johnson AE, Griffin L. Sex differences in neuromuscular control of quadriceps. Eur J Appl Physiol. 2020;120(10):2193-2202. [DOI:10.1007/s00421-020-04443-0] [PMID]
45. Chester R, Smith TO, Sweeting D, Dixon J, Wood S, Song F. The relative timing of VMO and VL in the aetiology of anterior knee pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2008;9:64. [DOI:10.1186/1471-2474-9-64] [PMID] [PMCID]
46. Willson JD, Dougherty CP, Ireland ML, Davis IM. Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg. 2005;13(5):316-325. [DOI:10.5435/00124635-200509000-00005] [PMID]
47. Richardson C, Hodges PW, Hides J. Therapeutic exercise for lumbopelvic stabilization: a motor control approach for the treatment and prevention of low back pain (2nd ed.). Edinburgh. Churchill Livingstone.2004.
48. Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine (Phila Pa 1976). 1996;21(22):2640-2650. [DOI:10.1097/00007632-199611150-00014] [PMID]
49. Hebert JJ, Koppenhaver SL, Magel JS, Fritz JM. The relationship of transversus abdominis and lumbar multifidus activation and prognostic factors for clinical success with a stabilization exercise program: a cross-sectional study. Arch Phys Med Rehabil. 2010;91(1):78-85. [DOI:10.1016/j.apmr.2009.08.146] [PMID]
50. Souza RB, Draper CE, Fredericson M, Powers CM. Femur rotation and patellofemoral joint kinematics: a weight-bearing magnetic resonance imaging analysis. J Orthop Sports Phys Ther. 2010;40(5):277-285. [DOI:10.2519/jospt.2010.3215] [PMID]
51. Liao TC, Yang N, Ho KY, Farrokhi S, Powers CM. Femur Rotation Increases Patella Cartilage Stress in Females with Patellofemoral Pain. Med Sci Sports Exerc. 2015;47(9):1775-1780. [DOI:10.1249/MSS.0000000000000617] [PMID]
52. Santos EP, Bessa SNF, Lins CAA, Marinho AMF, Silva KMP, Brasileiro JS. Electromyographic activity of vastus medialis obliquus and vastus lateralis muscles during functional activities in subjects with patellofemoral pain syndrome. Brazilian Journal of Physical Therapy. Rev Bras Fisioter. 2008;12(4):304-310. [DOI:10.1590/S1413-35552008000400009]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.