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ABSTRACT 

Background. This study investigated the effects of short-duration high-intensity simulation of soccer fatigue on the 

dynamic balance and isokinetic strength of the lower limbs in youth soccer players. Methods. Thirty-nine youth soccer 

players completed a high-intensity fatigue simulation in 5-min. The participants performed tests on dynamic balance 

and isokinetic strength before the fatigue simulation (PRE), immediately after simulation (POST5), and 20 min 

(POST20) and 35 min (POST35) after simulation. Dynamic balance was measured using the Y-Balance test for both 

legs in the anterior, posteromedial (PM), and posterolateral (PL) directions. The muscle strength of the lower limb was 

measured using the maximal isokinetic contraction of the dominant leg only. Results. Dynamic balance was 

significantly reduced after stimulation in all directions for both legs (P<0.005). Significant reduction in the eccentric 

hamstring, concentric hamstring, and concentric quadriceps peak torques were also observed (P<0.05). However, no 

significant reductions were found in the functional hamstring/quadriceps ratio and conventional hamstring/quadriceps 

ratio (P>0.05). Conclusion. Fatigue influences dynamic balance, hamstrings, and quadriceps strength which may have 

implications for higher risk of knee injury in youth players. 
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INTRODUCTION 

Knee injury is among youth soccer players (1). 

An epidemiology study has shown that the highest 

incidence of lower limb injuries is recorded at the 

end of the soccer match (2, 3). During fatigue, the 

quality and efficiency of the body’s sensory input 

may deteriorate and impair the motor output (4). 

Studies have shown that decreased hamstring 

strength during fatigue may negatively impact 

knee stability and increase the risk of hamstring 

strain (5, 6). In addition to the muscle strength, a 

reduction in the functional integrity of the knee 

joint tends to impair the postural balance and, in 

turn, increases the risk of anterior cruciate 

ligament (ACL) injury (7).  

Dynamic balance plays an essential role in 

most soccer technical skills that require one of the 

lower limbs to provide body support and balance 

while the other limb controls the ball (8, 9). This 
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state is one of the biomechanical markers for 

lower limb injury risk (8). The reduced 

posterolateral direction during a Y-balance test 

(YBT) is associated with the risk of ACL injury 

(7). A few studies have explored the effect of 

soccer-related fatigue on the muscle strength in 

adult soccer players (10-12). The reduced muscle 

strength, especially that of the hamstring eccentric 

(Hecc) (10), and the muscle imbalance between 

the hamstring eccentric and quadriceps concentric 

(H/QFUNC) (10, 11) are associated with the risk of 

a hamstring and ACL injuries. The results from 

these studies may indicate that fatigue plays a 

crucial role in the muscular risk factors in the 

mechanism of a hamstring and ACL injuries. In 

addition, the predictor of ACL and hamstring 

injury may be more useful when measured during 

the fatigue state (13).  

In soccer, various studies have used different 

types of soccer-specific fatigue simulations, such 

as the Loughborough intermittent shuttle test (11, 

14, 15), soccer-simulation protocol (16), soccer 

match simulation (17), and soccer-specific aerobic 

field test (SAFT90) (6, 18). Meanwhile, soccer-

specific match simulation (SAFT5) is a short-

duration test with high-intensity multidirectional 

movements that have been demonstrated to induce 

physiological responses comparable to those in 

longer-term match-play conditions (10). The short 

duration of SAFT5 helps resolve issues on the time-

consuming nature of inducing fatigue and can be 

used to screen a large group of soccer players. 

However, most studies that used the SAFT5 

protocol have only focused on the adult population 

involving recreational and amateur soccer players 

(10, 19). Studies that focused on changes in the 

dynamic balance and muscle strength due to 

fatigue and mainly involved youth soccer players 

are lacking. Investigating this population is 

essential because the rate of injury among youth 

soccer players is twice that of adult injuries (19). 

The development of short-term protocols, such as 

SAFT5, is important to induce fatigue, and these 

methods may indicate better injury predictors. 

However, SAFT5 does not include ball-oriented 

activities, which are vital in soccer. Bishop et al. 

(20) suggested that fatigue simulation should be 

modified based on the nature of specificity of a 

sport. Therefore, this study aimed to investigate the 

effects of short-duration high-intensity fatigue 

simulation on the dynamic balance and isokinetic 

strength among male youth soccer players. The 

hypothesis was that fatigue would change these 

selected biomarkers of lower limb injury among 

youth soccer players. 

MATERIALS AND METHODS 

Thirty-nine high school youth soccer players 

(age: 15.9±0.9 years, height: 1.7±0.1 m, and 

weight: 54.4±8.7 kg) participated in this cross-

sectional, repeated measures design study. Power 

analysis with sample-size estimation (10) showed 

that 39 participants would provide 80% power 

with a risk of type 1 error of 0.05. The participants 

were recruited from a government-funded 

secondary school by using purposive sampling. 

Participants were included if they regularly 

played soccer 3 to 5 times per week and for 40–

60 min per session. Participants were excluded if 

they had an injury of the lower limb within six 

months before testing. All participants and 

guardians were fully informed about the study 

procedure and signed the consent forms before 

participating. The Research Ethical Committee 

granted ethical approval (600-IRMI [5/1/16]), 

while the Ministry approved permission to 

conduct the study of Education. 

Fatigue Simulation. The fatigue simulation was 

a 5-min high-intensity exercise protocol modified 

from the previous study (10). The study involved 

over-ground (incorporating four positioned 

poles/markers) high-intensity multidirectional and 

utility movements, with frequent high accelerations 

and decelerations (Figure 1). The distance was 

modified to 12-m to make the protocol feasible for 

youth soccer players. This soccer fatigue simulation 

included several soccer-specific movements, such 

as kicking, jumping, heading, and sprints with a ball. 

The modification in the fatigue simulation activities 

is shown in Table 1. A pilot study was conducted to 

identify the reliability of the simulation. The relative 

reliability showed that the ICCs for Rating of 

Perceived Exertion (RPE) (0.92) (95% CI: 0.79–

0.97) and counter-movement jump (CMJ) (0.85) 

(95% CI: 0.79–0.97) were excellent according to 

Fleiss (21).  

Physiological Assessment. Heart rate (HR) 

was monitored continuously throughout the 

protocol to ensure that all players performed the 

protocol within the desired range (Polar heart rate 

system, Electro, Finland). In case where HR was 

not within the high-intensity range, encouragement 

was given to increase the participant’s motivation. 

The RPE (20-point Borg scale) and CMJ were 

assessed to monitor the level of fatigue and 

recorded during pretest (PRE), immediately 
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following fatigue simulation (POST5), after 15 

min of passive rest (POST20), and after 30 min of 

passive rest (POST35). The CMJ (free arm) height 

was measured with the My Jump 2 application 

(version 6.0.3) and was valid and reliable with 

satisfactory relative reliability (ICC≥0.88) and 

absolute reliability (CV<10%) (22).  

 
 

Table 1. Activity Profiles of Recent Fatigue Simulation Compared with the Activity Profiles of SAFT5  

CMJ: counter-movement jump 

 

 

Dynamic Balance. The participant’s dynamic 

balance was measured using the YBT for both 

legs (7). This test was conducted according to the 

guideline provided, in which the participants 

stood on one leg at the center of the Y and were 

instructed to try to reach as far as they could by 

using the other leg (23). Participants were 

required to place their hands on their hips and 

maintain their balance while reaching and 

returning to a bilateral stance. The YBT was 

completed in this order: dominant anterior, non-

dominant anterior, dominant posterolateral (PL), 

non-dominant PL, dominant posteromedial (PM), 

and non-dominant PM. A trial was considered to 

fail if the participants lost their balance through 

the movement, raising both arms to balance their 

body, touching the ground while reaching, and 

lifting the standing leg heel during execution. For 

each direction, nine trials were performed, and the 

measurement was taken during the 7th, 8th, and 9th 

execution. The length of each leg was measured 

before the test. The average (absolute reach 

distance) of three trials of the YBT was calculated 

and normalized to the limb length (relative reach 

distance) by using the following formula: 

Relative Reach Distance: 
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑎𝑐ℎ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑚)

𝐿𝑒𝑔 𝐿𝑒𝑛𝑔𝑡ℎ (𝑐𝑚)
  × 100 

 

Isokinetic Strength of the Lower Limb. 

Several studies have determined the reliability 

and validity of the isokinetic test by using Biodex 

System 3 (24, 25). The dominant leg was tested 

No  Activity Fatigue Simulation  Activity SAFT5 Speed (m/s) Time (s) 

0  5x Ball Passing  10 x scissors - - 

1  Stand Stand 0 4 

2  Jog  Jog 2.86 10 

3 5x Ball double-leg jump heading CMJ 1.39 17 

4 Stride  Stride  4.17 7 

5 Agility ladder drill  + 1 x Ball shooting Agility ladder drill   1.39 17 

6 CMJ + jog Jog  2.86 10 

7 Sprint  with a ball  Sprint  5.58 6 

8 Stand  Stand 0 4 

9 Jog  Jog  2.86 10 

10 5x Ball Passing 10 x scissors 1.39 17 

11 CMJ + jog Jog  2.86 10 

12 5x Ball double-leg jump heading CMJ 1.39 17 

13 Stride  Stride  4.17 7 

14 Agility ladder drill + 1 x Ball shooting Agility ladder drill   1.39 17 

15 Stand  Stand  0 4 

16 Jog  Jog  2.86 10 

17 5x Ball Passing  10 x scissors 1.39 17 

18 CMJ + jog Jog  2.86 10 

19 Jog  Jog 2.86 10 

20 Jog  Jog  2.86 10 

21 5x Ball double-leg jump heading CMJ 1.39 17 

22 CMJ + jog Jog  2.86 10 

23 Agility ladder drill + 1 x Ball shooting Agility ladder drill 1.39 17 

24 Stride  Stride  4.17 7 

25 Stand Stand  0 4 

26 5x Ball Passing 10 x scissors 1.39 17 

27 Jog  Jog  2.86 10 

28 Sprint  with a ball Sprint  1.39 6 

29 CMJ    
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by using an isokinetic dynamometer (IKD, 

Biodex System 3, Shirley, NY) to determine the 

maximum voluntary contractions (MVC) of the 

eccentric hamstring strength (Hecc), concentric 

quadriceps strength (Qcon), and concentric 

hamstring strength (Hcon). The dominant leg was 

determined based on the most favored leg during 

kicking. The IKD was calibrated before the study 

was started by following the manufacturer’s 

instructions. The lateral epicondyle of the 

dominant knee was aligned with the rotational 

axis of the dynamometer, and the distal calf cuff 

was positioned two fingers above the lateral 

malleolus. The seat of the IKD was adjusted 

according to the participants’ comfort. A seat belt 

with upper body-cross straps and a strap on the 

distal thigh were installed to isolate the 

hamstrings and quadriceps of the dominant leg. 

The participants were required to perform 

repeated maximum isokinetic contractions within 

90° ROM at 120°/s for concentric MVC five 

times. Then, the participants had to resist the 

passive external knee extension over 90° ROM 

and at 120°/s during eccentric MVCs. The 

velocity was chosen because it was widely used 

to measure muscle strength in soccer players (26).  

Testing Procedure. All tests were conducted 

in the laboratory because of its ample space, 

optimal room temperature (28-31.1 °C), and lack 

of external interference. Demographic data, 

which included the age, height, body weight, 

body mass index (BMI), and dominant leg of the 

participants, were collected and recorded before 

the testing. The Physical Activity Readiness 

Questionnaire was used to detect the risk factors 

of cardiovascular diseases, general health, and 

well-being when the exercise level was increased 

(27). Then, the familiarization session was 

conducted one week before the actual testing 

procedure. During the familiarization sessions, 

participants were instructed to be familiarized 

with a dynamic warm-up, CMJ, fatigue 

simulation, YBT, and IKD. The dynamic balance 

and muscle strength tests were conducted on two 

days, with a rest between a week. On the actual 

testing day, the participants first warmed up. 

Then, the HR, RPE, and CMJ heights were 

recorded. Afterward, the YBT was performed, 

followed by a fatigue simulation. After 

completing the fatigue simulation, the 

participants immediately performed the test at 

POST5, followed by POST20 and POST35 with 

15 min of passive rest. The participants performed 

the same procedures on the second day of the test, 

but the IKD test measured them. 

Statistical Analysis. Data were analyzed 

using SPSS (Version 23; SPSS Inc., USA). 

Descriptive statistics of outcome measures 

included means and standard deviations. The 

Shapiro-Wilk test confirmed the normality of the 

data. A one-way repeated measure ANOVA was 

used to investigate the influence of fatigue 

simulation on each dependent variable. A 

Bonferroni procedure was used for the post-hoc 

analysis, and the alpha level was set to 0.05. 

Cohen’s classification was used to rank the size 

(0.01=small effect, 0.06=medium effect, and 

0.14=large effect) to determine the effect size’s 

magnitude. Changes in percentages and recovery 

scores were also reported. 

RESULTS 

Participants’ Characteristics. The 

participants’ characteristics are presented in Table 2. 

Physiological Changes. Significant increase 

in the HR (F3.0, 108=498.379, P=0.001, effect 

size=0.93) and RPE (F2.28, 82.167=304.786, 

P=0.001, effect size=0.894) but a significant 

reduction in CMJ height (F2.33, 83.95=165.901, 

P=0.001, effect size=0.822) were observed after 

the complete fatigue simulation.  

Dynamic Balance. Means and standard 

deviations of the anterior, PM, and PL are shown 

in Table 3. Significant reductions were found in 

the dominant limb anterior, PM, and PL at 

POST5, POST20, and POST35 [(F 1.814, 

68.928=21.461, P=0.001), (F 1.867, 70.959=17.724, 

P=0.001), and (F 1.490, 56.612= 14.790, P=0.001), 

respectively] after the fatigue simulation was 

performed. The corresponding effect sizes were 

0.859, 0.318, and 0.280. Significant reduction 

was found in the nondominant limb anterior, PM, 

and PL at POST5, POST20, and POST35 (F 1.740, 

66.128= 48.423, P=0.001), (F 1.453, 55.197=16.207, 

P=0.001), and (F 1.681, 63.894=29.446, P=0.001), 

respectively. The corresponding effect sizes 

calculated from the partial eta square were 0.560, 

0.299, and 0.437.  

Muscle Strength of the Lower Limb. The 

means and standard deviation of the Hcon, Hecc, 

Qcon, H/QCONV, and H/QFUNC are shown in Table 

4. Significant reductions were found in the Hcon 

(F 2.733, 117.59 =6.661, P=0.001), Hecc (F 3, 

264.565=5.366, P=0.002), and Qcon (F 2.182, 

429.604=9.695, P<0.001) peak torques, and the 

corresponding effect sizes were 0.418, 0.376, and 
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0.504. Finally, no significant differences were 

found in the H/QCONV (F 3, 114=0.234, P=0.929) 

and H/QFUNC (F 2.541, 0=0.116, P=0.873) ratios with 

corresponding effect sizes of 0.003 and 0.006. 
 

Table 2. Mean and standard deviation of demographic 

 Mean Standard Deviation (SD) 

Age (Year) 15.9 0.7 

Height (m) 1.7 0.1 

Weight (kg) 54.4 8.7 

BMI (kg/m2) 19.5 2.6 

Limb Length (cm) 88.8 3.6 

 

 
Table 3. Mean, standard deviation, and effect of condition for dynamic balance 

 Mean ± SD Effect of Condition 

PRE POST 5 % 

Change 

POST 20 % 

Recovery 

POST 35 % 

Recovery 

F-statistic 

(df1,df2) 

p-

value 

Dominant          

Anterior 85.30±10.44 80.27±10.79 5.90 81.06±10.64 4.97 83.51±10.49 2.10 21.461(1.814, 

68.928) 

0.001 

Posteromedial  110.79±9.23 104.50± 9.57 5.68 107.65±10.04 2.83 109.06±9.13 1.56 17.724(1.867, 

70.959) 

0.001 

Posterolateral 107.67±10.65 101.66±10.64 5.58 105.14± 10.25 2.35 105.91±10.60 1.63 14.790(1.490, 

56.612)  

0.001 

Non-dominant          

Anterior 87.23± 9.23 80.34± 10.64 7.90 82.02± 9.61 5.97 83.38± 9.06 4.41 48.423(1.740, 

66.128)  

0.001 

Posteromedial  112.33± 8.67 106.12± 

10.55 

5.53 108.45± 8.65 3.45 110.46± 8.58 1.66 16.207(1.453, 

55.197) 

0.001 

Posterolateral 108.27± 9.07 100.07± 

11.30 

7.57 104.31± 10.90 3.66 106.27± 9.04 1.85 29.446(1.681, 

63.894)  

0.001 

 

 
Table 4. Mean, Standard Deviation and Effect of Condition for Muscle Peak Torque  

 Mean ± SD Effect of Condition 

PRE POST 5 % 

Change 

POST 20 % 

Recovery 

POST 35 % 

Recovery 

F-Statistic 

(df1,df2) 

P-

Value 

Hcon 65.55± 10.44 61.69± 10.16 5.89 62.76± 10.71 4.26 62.69± 10.57 4.36 6.661(2.733, 

117.59) 

0.001 

Hecc 108.77± 

19.66 

102.53± 

20.12 

5.74 104.81± 

22.85 

3.64 106.11± 

20.23 

2.45 5.366(3, 264.565) 0.002 

Qcon 116.60± 

15.55 

109.86± 

15.30 

5.78 111.86± 

16.14 

4.07 112.65± 

16.65 

3.39 9.695(2.182, 

429.604)  

0.001 

Hcon/Qcon 0.56± 0.067 0.56± 0.078 0 0.56± 0.068 0 0.56± 0.081 0 0.234(3, 114) 0.929 

Hecc/Qcon 0.93± 0.15 0.93± 0.18 0 0.94± 0.18 0 0.94± 0.16 0 0.116 (2.541, 0) 0.873 

 

 

DISCUSSION 
The results demonstrated that dynamic 

balance was affected in all directions by fatigue. 

Muscle strength also significantly reduced the 

dominant limb Hecc, Hcon, and Qcon peak 

torques. However, no significant differences were 

found in the H/QFUNC and H/QCONV. 

In this study, fatigue simulation was used 

because it applies ball-oriented soccer-specific 

drills, such as passing, heading, shooting, and 

sprinting, to mimic the common movements 

during a soccer match. The results showed that 

fatigue significantly reduced all directions of the 

YBT score for both legs. This phenomenon was 

in agreement with that obtained by Aymen et al. 

(2017) (28), who investigated balance among the 

youth (10–13 years old) recruited from youth 

taekwondo and induced fatigue using the 

isometric and isokinetic protocol. Pau et al. 

(2016) (29) obtained a similar result for elite 

youth soccer players under 15. The reduction in 

the balance after fatigue could be due to decreased 

force production and muscle activation (30), 

decreased nerve conduction activity, and 

deterioration of the sensory input (4). 

Meanwhile, Pau et al. (2016) (29) discussed 

that alterations in proprioception, sequence of 

activation, timing, and amplitude of contraction 

of the muscles after fatigue might negatively 

impact the dynamic balance. A similar study did 

not show significant differences in the dynamic 

balance after the induction of a generally 

localized fatigue simulation (31). This 

phenomenon could be due to the fact that the 

fatigue effect was diminished, because they did 

not measure the dynamic balance immediately 

after completion of the fatiguing protocol but 

rather after 2 min. 
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According to which direction was the most 

affected, the relative reach distance of the 

dominant and non-dominant leg scores in the 

current study showed that the PL reach was 

affected the most after fatigue, followed by the 

PM and anterior directions. A recent study could 

not be compared with other studies because of the 

limited sources on the effect of fatigue on the 

dynamic balance among the youth population. 

The only study that investigated the effect of 

fatigue used the YBT among the youth but did not 

state which direction was affected the most (28). 

Other studies involved an adult population, and a 

recent study was inconsistent with the results 

obtained by Johnston et al. (32), in which the 

anterior reach was affected the most, followed by 

PL and PM. Another study found the highest 

decline in the anterior reach, followed by PM and 

PL (33). However, a study shows that the anterior 

was the least affected (34). The different 

directions may have been caused by the distinct 

fatigue protocols applied. Johnston et al. (32) 

applied the cycling fatigue protocol that used the 

anterior and posterior thigh muscles more than the 

medial and lateral ones. Meanwhile, Hosseini and 

Hejazi (33) used soccer fatigue protocol for 

players with ankle instability, which may cause 

other compensations by the muscle used during 

the test.  

Another component in this study is the 

recovery time after fatigue. The repeated measure 

of the YBT was performed to observe the time 

frame needed to recover following an episode of 

exertion in a game. In this study, the degradation 

of the dynamic balance returned close to the PRE 

baseline after 20 min for the dominant PM, 

dominant PL, and non-dominant PL. Meanwhile, 

according to the means of all directions, the non-

dominant PL showed the highest decrease in the 

reach after fatigue (PRE to POST5). This result 

showed that the non-dominant PL was the most 

affected by fatigue. However, the non-dominant 

PL showed a significant increase between POST5 

and POST20, which indicated a fast recovery 

despite being affected the most.  

In a recent study, the anterior reach for both 

leg recovery processes was the slowest among the 

three directions. Compared with those by 

Johnston et al. (32), these results showed that the 

anterior score recovered the fastest within 10 min. 

Meanwhile, PM recovered progressively in 20 

minutes, but PL took more than 20 minutes to 

start recovering. However, these results could not 

be strictly compared with those obtained by 

Johnston et al. (32) because they only measured 

the dominant leg and used a different population. 

The factor that might be suitable for this finding 

was that most participants had a dominant right 

leg. This characteristic indicates that the 

participants were used to balancing on the left leg 

while kicking, and this practice may have helped 

develop better postural control from the muscles 

of the left leg muscle. This result was in 

agreement with those by Barone (35), who 

investigated the balance ability between the 

dominant and non-dominant legs. They found that 

soccer players showed better standing balance on 

the non-dominant leg due to the soccer activity. 

The slow recovery in the anterior direction in both 

legs is supported by Khan et al. (36), who 

investigated the recovery in the balance after a 

sport-specific sprint protocol. They found that the 

anterior reach is the slowest to recover compared 

with PM and PL in SEBT. This phenomenon 

could be due to the more usage of the anterior 

muscle during the simulation, which stressed 

more the quadriceps and hamstring for 

movement, such as jumping, sprinting, and high 

knee running (37). In addition, the anterior 

muscles were more active and sustained more 

damage during the anterior movement (37).  

Significant reductions were noted in the Hecc, 

Hcon, and Qcon peak torques after fatigue 

simulation, contrary to the results of Lehnert et al. 

(12). In their study, fatigue was induced in elite 

youth soccer players by using SAFT90. The results 

showed no significant reduction in the three peak 

torques after fatigue simulation. The findings in 

the current study were difficult to compare with 

those from previous studies due to the limited 

reports that involved youth soccer players. 

Among the studies that involved adult soccer 

players, mostly the Hecc peak torques showed a 

significant reduction (2, 6, 10, 14, 38, 39). Only 

two studies showed significantly reduced Hcon, 

Hecc, and Qcon (2, 10). The significant reduction 

in the Hecc may be because the hamstring have 

more type-2 muscle fibers compared with the 

quadriceps (40). Therefore, this characteristic was 

perceived to increase the risk of injury because 

Greig (5) mentioned that the reduction in the Hecc 

might cause the varus malalignment on the knee, 

which can lead to a hamstring strain. In addition, 

anatomically, the Hecc strength is essential to 

stabilize the knee joint to assist the ACL from 

excessive anterior tibial translation caused by 
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extreme load forces, especially generated during 

knee extension (10, 18). The reduction in the 

Hecc could increase the risk of ACL injury. 

Despite the significant reductions in the three 

peak torques over time, the H/QCONV ratio did not 

significantly change. This result is inconsistent 

with that in a previous study, in which the 

laboratory-based soccer-specific exercise (41) and 

a field test representative of soccer-specific 

movements (11) verified a significant reduction in 

H/QCONV after completion of the fatigue 

simulation. Olyaei et al. (42) and Small et al. (6) 

obtained results that supported the current findings. 

Therefore, fatigue produced by fatigue simulation 

did not cause an imbalance between the hamstring 

and quadriceps concentrically. A recent study 

showed nonsignificant findings in the H/QFUNC 

ratio, which is consistent with Lehnert et al. (12). It 

could be because the Hecc and Qcon peak torques 

were reduced spontaneously, and muscle 

imbalance between them did not occur. Hence, 

instead of muscle imbalance, both muscles 

globally became weak, resulting in reduced 

performance and increased risk of injury.  

CONCLUSION 
Fatigue simulation negatively affected a 

soccer player’s dynamic balance, Hecc, Hcon, 

and Qcon. The soccer player is at risk of lower 

limb injury in a fatigued state because fatigue 

alters the dynamic balance and reduces the muscle 

strength ability of youth soccer players. Since 

fatigue has been proved as one of the causes that 

contribute to injury, many prevention strategies 

need to be applied. Therefore, physical therapy 

should be added to the criteria when assessing the 

return-to-play condition. This activity may reduce 

the risk of another injury and improve the player’s 

performance.  

Several limitations were revealed in the 

current study. The participants were recruited 

among recreational youth soccer players and did 

not represent the whole population of youth 

soccer players. Second, the literature on the effect 

of fatigue among youth soccer players is limited, 

resulting in the inappropriateness of comparison 

with the adult population. Lastly, the fatigue 

simulation only exerted the participants for 5-min, 

which is only a short duration. This fatigue 

simulation could reproduce the same 

physiological changes as during the long-duration 

fatigue simulation, and the former can be more 

practically used in hospitalization. However, the 

effect produced might not be the same as during a 

real soccer game, which lasts for 90 min.  

APPLICABLE REMARKS 

• Fatigue simulation for 5-min is practically 

used in the clinical setting according to the 

time consumption.  
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