ORIGINAL ARTICLE

The Correlation between Sacroiliac Joint Dysfunction and Hip Adductor Tightness

¹Mohammad Hassabi, ¹Amir Hosein Abedi Yekta, ¹Shahin Salehi, ¹Mehrshad Poursaeid Esfahani, ²Seyedeh Sara Shams^{*}, ³Mohammad-reza Sohrabi

¹Department of Sports and Exercise Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ²School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ³Department of Community Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Submitted 12 September 2021; Accepted in final form 10 October 2021.

ABSTRACT

Background. Low back pain is one of the ten most common causes of disability, and sacroiliac joint dysfunction is one of the most common causes of it. **Objectives.** This study aimed to find if there is any association between hip adductor tightness with sacroiliac joint dysfunction. **Methods.** Sixty people who had attended our Sports Medicine Clinic took part in this study (30 in each group). The case group contains patients who had sacroiliac joint dysfunction based on physical examination and the control group was patients with similar characteristics who attended for other reasons rather than spinal or lower limb problems. Tenderness and tightness of adductor muscles were assessed in both groups by a fixed sports medicine specialist. **Results.** The level of tenderness (Kendall Tau correlation coefficient equal to 0.440 and P <0.001) and tightness (Kendall Tow correlation coefficient equal to 0.479 and P <0.001) of the hip adductor muscles in the case group were significantly higher. More people in the case group reported hip adductor muscle involvement in people suffering from sacroiliac joint dysfunction.

KEYWORDS: Sacroiliac Joint Dysfunction, Hip Adductors, Low Back Pain, Muscle, Tightness

INTRODUCTION

Low back pain is one of the most common causes of disability and imposes a high annual cost on the health care system (1, 2). It is more common in high income countries (3) and its prevalence is estimated at 3-20%. It is more common in middle age and people over 50 (4) and about 70-80% of people develop low back pain during their lifetime (5, 6). One of the most common causes of low back pain is sacroiliac joint dysfunction (7, 8) and accounts for 15-25% of the causes of back pain (9).

Sacroiliac joint (SIJ) is the largest joint in the body which is a unique synovial joint with limited

and counter-nutation (backward rotation). This joint is surrounded by numerous muscles and ligaments that, in addition to providing stability, connect this joint to different parts of the spine, pelvis and groin (9, 10). SIJ connects the axial skeleton to the lower limb and is responsible for transmitting force to the lower limb (5). The pelvic joints are connected in a closed kinetic chain, and the ligaments make a stronger connection between the spine, pelvis, and groin, according to which the SIJ and the symphysis pubis can interact (11).

movements including nutation (forward rotation)

Diagnosis of pain and SIJ dysfunction is completed using both invasive and non-invasive methods (12). Invasive methods include injection of local anesthetic into SIJ capsule (12, 13). Noninvasive methods include touching and provocative tests of the location of SIJ (14-16). A single test is usually not enough to diagnose SIJ pain and dysfunction (5). It is recommended to perform 6 tests at the same time and the criterion for detecting the positive of 3 tests is recommended (17, 18).

Hip adductors include adductor longus, adductor magnus, and adductor brevis. Adductor longus is derived from the inferior ramus of the pubis, adductor brevis is derived from the upper pubis ramus, and adductor magnus is derived from the upper pubis ramus and ischial tuberosity (19).

In addition to hip adduction, these muscles help stabilize the hip and lower limbs during the standing phase of the gait. One of the most common symptoms of hip adductor muscle disorder is groin and inner thigh pain, which gets worse with walking and running (11).

Diagnosis of pain and stiffness of hip adductors is by clinical examination. Clinical examinations included (20):

1) Proximal touch of the adductor muscles to check for tenderness

2) Touch the adductor muscles to check muscle stiffness

3) Adduction of the lower limb against resistance

4) Stretching of hip adductors

The sacroiliac joint plays an important role in the transmission of forces, and any disturbance in this joint can upset the balance of these forces.

Previous studies have shown that in low back pain the biomechanics of standing and walking undergo changes, the most important of which are changes in rotation and reduced abduction of the hip and lower limbs (21).

In our clinical experience, we noticed a probable coexistence of hip adductor muscle stiffness and pain in patients with SIJ pain and dysfunction. Since there was insufficient evidence to support this finding, this study aimed to investigate the correlation between hip adductor stiffness and SIJ dysfunction and report the results for the first time.

MATERIALS AND METHODS

Study Design. Participants were selected from patients who attended the Sports Medicine Clinic of Taleghani Hospital during 2019-2020 for low back pain and were diagnosed with SIJ dysfunction. The control group was selected from those who attended the clinic during the same period with a complaint other than spinal or lower extremity problems.

The pain and stiffness of hip adductor muscles were evaluated and measured by a fixed sports medicine specialist in both case and control groups by performing a series of clinical examinations.

This study was performed in the sports medicine department of Taleghani Hospital in Tehran under the supervision of the Medical School of Shahid Beheshti University of Tehran (IRCT registration ID: IR.SBMU.RETECH.REC.1399.756.).

Participants. The sample size was 60 people, including 30 people in the case group and 30 people in the control group.

-Inclusion criteria included: age 18-60 years, low back pain episode of fewer than 3 months, presence of SIJ dysfunction (3 or more positive test of SIJ tests), equality of true and apparent length of lower limb (apparent length: distance between navel and below medial ankle, true length: distance between anterior superior iliac spine and lower of medial ankle), no history of severe trauma to the spine, pelvis, lower limbs, abdomen and chest during the last 12 months, no history of spinal, pelvic, lower limb, abdominal and chest surgery for the past 12 months, absence of localized spinal cord injury including tumor, infection and fracture, absence of known congenital disorders of the pelvis and spine that limit movement or obstruction of examination. absence of known systemic arthropathy, absence of neuropathy, absence of metabolic disorders, absence of no signs or evidence of radiculopathy, no pregnancy, no first six months after delivery, no menopausal women.

-Exclusion criteria included: any musculoskeletal disorders of the lower extremities that interfere with movement or examinations, unwillingness to cooperate during the study.

After selecting the samples, all stages of the study were explained to them and written consent was obtained from them to carry out the project. Patient information was kept confidential.

-Execution of the study:

-Individuals underwent clinical examinations by a fixed sports medicine specialist. These examinations included:

1) Touching SIJ to check for tenderness.

Information regarding SIJ tenderness was recorded as follows: 1- No pain 2- Mild tenderness (causing pain with deep touch) 3-Moderate tenderness (causing pain with superficial touch) 4- Severe tenderness (severe reaction of the patient with superficial touch).

2)Performing six diagnostic tests for SIJ dysfunction:

a) Gaenslen test

b) Distraction test

c) Compression test

d) Sacral thrust test

e) Thigh thrust or femoral shear test

f) FABER test

(Figure 1)

The result was recorded by the same person as; Positive: causing pain similar to patient pain and Negative: painless.

If three or more of the six tests listed above were positive, the person was diagnosed with SIJ dysfunction and was placed in the case group.

The control group consisted of people without lumbar and lower extremity involvement who had no evidence of SIJ dysfunction on examination and were similar in, age, sex, BMI, and level of physical activity.

People's height was measured in standard conditions using a meter attached to the wall without shoes. Weight was measured by using a scale in which validity had been checked and with a minimum of usual clothing (shirts and light pants for men and coats and lightweight pants for women). BMI was calculated as weight in kilograms divided by height squared in meters.

The level of physical activity according to the ACSM guideline (at least 3 days a week for 30 minutes during the last 3 months of regular and targeted physical activity with moderate intensity) was divided into two groups: sedentary and active.

In the next stage, people in both groups underwent clinical examination to evaluate hip adductors, including:

I- Touching the origin of the adductor longus muscle to check the tenderness: tenderness was recorded as 1- painless 2- mild tenderness (causing pain with deep touch) 3- moderate tenderness (causing pain with superficial touch) 4- severe tenderness (severe patient reaction with superficial touch)

II-Touching the length of the adductor longus muscle to check muscle stiffness: stiffness was recorded as 1- Normal consistency 2- Touch of stiffness 3- Clear bulge

III-Lower limb adduction against resistance (Figure 2A): results were recorded positively (causing pain) and negatively (without pain)

IV- Stretching of hip adductors (Figure 2B): results were recorded positively (causing pain) and negatively (without pain).

All examinations were performed by a fixed sports medicine specialist.

Statistical Analysis. Analysis of data was blinded. Quantitative data was displayed using mean or standard or median deviation and midquarter range and qualitative data were displayed using frequency and percentage. Regarding variables such as stiffness and tenderness of the adductor, the maximum intensity for each person was compared between the two groups.

To compare the indices between the two study groups, chi-square tests (Fisher's exact P-Value was calculated if necessary), Kendall Tau B, independent t-test and Mann-Whitney correlation coefficient were used. The significance level of statistical tests was considered 0.05 and analyzes were performed in SPSS software version 25.

RESULTS

A total of 60 subjects were examined, 30 in the case group (age: 40.73 ± 8.88 years old) and 30 in the control group (age: 40.73 ± 9.03 years old).

There were no statistically significant differences in mean age (P = 0.999), patient sex ratio (P = 0.999), delivery history (P = 0.999), body mass index status (P = 0.896) and activity level (P = 0.999) in the two study groups. Details are shown in Table 1.

The results of six tests for SIJ dysfunction are shown in Table 2.

-Sacroiliac joint tenderness:

In the case group, two people (6.7%) had mild tenderness, 20 people (66.7%) had moderate tenderness and 8 people (26.7%) had severe tenderness, and none of the subjects were without tenderness. Twenty-eight people (93.3%) of the control group did not have sacroiliac joint tenderness, only two people (6.7%) had mild tenderness. In the case group, the intensity of SIJ tenderness was significantly higher than the control group (Kendall Tau correlation coefficient was 0.874 and P < 0.001).

-Hip adductors tenderness:

In the examination of hip adductors tenderness, in the case group, 4 people(13.3%) were without tenderness and in the control group 14 people(46.7%) were without tenderness, 6 people(20%) in the case group and 10 people(33.3%) in the control group had mild tenderness, 15 people (50%) in the case group and 5 people (16.7%) in the control group had moderate tolerance and 5 people (16.7%) in the control group had moderate tolerance and 5 people (16.7%) in the control group had severe tenderness. In the case group, the intensity of hip adductors tenderness was significantly higher than the control group. (Kendall Tau correlation coefficient was 0.440 and P < 0.001). The results are shown in Table 3.

-Hip adductors stiffness:

In the examination of hip adductor stiffness of people in the case group, 8 people (26.7%) had normal consistency, 17 people (56.7%) of patients had stiffness and 5 people (16.7%) had clear

bulging and in the control group 23 people (76.7%) had normal consistency, 6 people (20%) had stiffness, 1 people (3.3%) had obvious bulging. In the case group, the severity of hip adductor stiffness was significantly higher than the control group (Kendall Tau correlation coefficient equal to 0.479 and P <0.001). The results are shown in Table 3.

-Hip adductors pain:

Twenty-four people (80%) in the case group and 9 people (30%) in the control group suffered from hip adductor pain. The proportion of people suffering from hip adductor pain in the case group was statistically significantly higher than people in the control group (P <0.001). The results are shown in Table 3.

Hip adductor pain was assessed by two tests including lower limb adduction against resistance and passive stretching of the adductors, the results of which are shown in Table 4.

Figure 1. SIJ provocative physical examination maneuvers. a: The Gaenslen maneuver, b: The distraction test, c: The compression test, d: The sacral thrust test, f: The thigh thrust or femoral shear test, g: The FABER (flexion, abduction, and external rotation) test.

Figure 2. Hip adductors tests. a: Stretching of the adductor muscles, b: Adduction against resistance.

Variable		Groups		P-Value	
			Case (n=30)	Control (n=30)	
Age		Average (standard deviation)	40.73 ± 8.88	40.73 ± 9.03	0.999
Sex					0.999
Male		Number(percent)	15 (50)	15 (50)	
Femal	e	Number(percent)	15 (50)	15 (50)	
BMI					0.896
Norm	al	Number(percent)	14 (46.7)	15 (50)	
Overv	veight	Number(percent)	13 (43.3)	12 (40)	
Obese		Number(percent)	3 (10)	3 (10)	
Delivery histor	у				0.999
Yes		Number(percent)	2 (13.3)	2 (13.3)	
No		Number(percent)	13 (86.7)	13 (86.7)	
Physical activit	У				0.999
Seden	tary	Number(percent)	21 (70)	21 (70)	
Active	e	Number(percent)	9 (30)	9 (30)	

Table 1. Base Line Characteristics

 Table 2. Comparison of Sacroiliac Joint Pain and Dysfunction in Case and Control patient

Sacroiliac Dysfunction Test .Test Result	Group	P-Value	
	Case	Control	
	Number (Percent)	Number (Percent)	
Gaenslen test			< 0.001
Positive	29 (96.7)	1 (3.3)	
Negative	1 (3.3)	29 (96.7)	
Distraction test			< 0.001
Positive	16 (53.3)	0 (0)	
Negative	14 (46.7)	30 (100)	
Compression test			< 0.001
Positive	22 (73.3)	1 (3.3)	
Negative	8 (26.7)	29 (96.7)	
Sacral thrust test			< 0.001
Positive	15 (50)	1 (3.3)	
Negative	15 (50)	29 (96.7)	
Thigh thrust or femoral shear test			< 0.001
Positive	22 (73.3)	1 (3.3)	
Negative	8 (26.7)	29 (96.7)	
FABER test			< 0.001
Positive	26 (86.7)	3 (10)	
Negative	4 (13.3)	27 (90)	
Total result			< 0.001
Positive	30 (100)	0 (0)	
Negative	0 (0)	30 (100)	

 Table 3. Determining and Comparing the Frequency of Tenderness, Stiffness and Pain of Hip Adductors in Case and Control Groups

Variable . Level of Variable Intensity	Groups		P-Value
	Case	Control	
	Number(Percent)	Number(Percent)	
Hip adductors tenderness			< 0.001
No pain	4 (13.3)	14 (46.7)	
Mild tenderness	6 (20)	10 (33.3)	
Moderate tenderness	15 (50)	5 (16.7)	
Severe tenderness	5 (16.7)	1 (3.3)	
Hip adductors tightness			< 0.001
Normal consistency	8 (26.7)	23 (76.7)	
Tight in touch	17 (56.7)	6 (20)	
Obvious bulging	5 (16.7)	1 (3.3)	
Hip adductors pain			< 0.001
Positive	24 (80)	9 (30)	
Negative	21 (70)	6 (20)	

Test . Result	Groups		P-value
	Case	Control	
	Number(percent)	Number(percent)	
Lower limb adduction against resistance			0.001
Painless	15 (50)	27 (90)	
Painful	15 (50)	3 (10)	
Stretching of hip adductors			0.004
Painless	10 (33.3)	21 (70)	
Painful	20 (66.7)	9 (30)	

Table 4. Determining and Comparing the Frequency of Hip Adductor Pain in Terms of Clinical Tests in Case and Control Groups

DISCUSSION

This study specifically examines the correlation between pain and dysfunction of SIJ with pain and stiffness of hip adductors for the first time. The hypothesis was that the pain and stiffness of hip adductors are associated with pain and dysfunction of SIJ. It was confirmed by the results of our study and showed that hip adductors are more tender and stiffer in patients with SIJ pain and dysfunction. Besides, hip adductor pain was reported more commonly in these people. However, the results are not able to determine the cause-and-effect relationship, meaning that SIJ dysfunction causes pain and stiffness of the hip adductors, or vice versa, or there is a two-way relationship between them.

According to the results of a study conducted by Kurosawa et al. the prevalence of groin pain in patients with SIJ dysfunction was significantly higher than in patients with sacroiliac spinal cord stenosis and lumbar disc herniation (22). Although they had not evaluated the cause of groin pain, now with regard to the results of this study it can be postulated that adductor tightness is responsible for it.

SIJ pain has been seen frequently in cross country skiers and rowers (23). Also, athletes involved in unilateral loading such as kicking and throwing are at increased risk (24). On the other hand, adductor injuries and groin pain are more common in sports involving kicking (25, 26).

Axial force of the weight of the body enters the acetabulum and femoral head through the SIJ and tends to deflect the head of femur. The adductor and abductor muscles try to stabilize the femoral position at the coronal level by applying reciprocal forces. Imbalance between these two forces causes gait disturbance (10, 27). SIJ and symphysis publis are linked in a closed kinetic chain and can interact (28). As the hip adductor muscles are connected to the upper and lower ramus of the publis, the forces from these muscles

are transmitted to the pelvis and eventually to the SIJ. As a result, SIJ disorders and hip adductors can interact also.

According to the results of this study, it is recommended that patients with SIJ pain and dysfunction be examined for hip adductors. It is recommended that future studies be performed to investigate the cause-and-effect relationship between the two disorders as well as the effect of hip adductor stiffness therapy on pain and SIJ dysfunction.

Limitations. In this study, hip adductors were examined in general and each was not examined separately.

Strengths. This study was performed with the control group. All patients were examined by a fixed sports medicine specialist. Therefore, the tests (how to do the test and the power of touch) were the same for all people. To reduce bias, the case and control group members were selected from the same community.

CONCLUSION

This study has revealed evidence of a correlations between sacroiliac joint dysfunction and the involvement of hip adductor muscles for the first time. It has been shown that these muscles were tenderer and tighter in people who were suffering from sacroiliac joint pain or dysfunction.

ACKNOWLEDGMENTS

We acknowledge Taleghani Hospital Research Development Committee for their support and Dr Robabeh Ghossi-Ghasemabadi and Dr Faezeh Maleklou for their valuable assistance.

APPLICABLE REMARKS

This study has revealed evidence of a correlation between sacroiliac joint dysfunction and the involvement of hip adductor muscles for the first time. According to the results of this study, it is recommended that patients with SIJ

pain and dysfunction be examined for hip adductors.

AUTHORS' CONSIDERATION

Study conceptualization and design: Mohammad Hassabi, Seyedeh Sara Shams. Data collection: Mohammad Hassabi, Seyedeh Sara Shams, Amir hosein Abedi Yekta, Shahin Salehi, Mehrshad Poursaeid Esfahani. Data analysis and interpretation: Mohammad Hassabi, Seyedeh

REFRENCES

Sara Shams, Mohammad-reza Sohrabi. Writing manuscript: Mohammad Hassabi, Seyedeh Sara Shams. All authors read and approved the final version of the manuscript.

SUPPORTED

Medical School of Shahid Beheshti University of Tehran (IRCT registration ID: IR.SBMU.RETECH.REC.1399.756.).

- Hoy D, Brooks P, Blyth F, Buchbinder R. The Epidemiology of low back pain. Best Pract Res Clin Rheumatol. 2010;24(6):769-781. doi: 10.1016/j.berh.2010.10.002
- Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M, Mokdad A. Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. *Lancet*. 2012;**380**(9859):2129-2143. doi: 10.1016/S0140-6736(12)61680-8
- 3. Vlaeyen JWS, Maher CG, Wiech K, Van Zundert J, Meloto CB, Diatchenko L, et al. Low back pain. *Nat Rev Dis Primers*. 2018;**4**(1):52. **doi:** 10.1038/s41572-018-0052-1 **pmid:** 30546064
- 4. Meucci RD, Fassa AG, Faria NM. Prevalence of chronic low back pain: systematic review. *Rev Saude Publica*. 2015;49. doi: 10.1590/S0034-8910.2015049005874 pmid: 26487293
- Foley BS, Buschbacher RM. Sacroiliac joint pain: anatomy, biomechanics, diagnosis, and treatment. Am J Phys Med Rehabil. 2006;85(12):997-1006. doi: 10.1097/01.phm.0000247633.68694.c1 pmid: 17117004
- 6. Hernandez A, Gross K, Gombatto S. Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain. *Clin Biomech (Bristol, Avon)*. 2017;**47**:46-52. **doi:** 10.1016/j.clinbiomech.2017.05.012 **pmid:** 28600994
- Cher D, Polly D, Berven S. Sacroiliac joint pain: burden of disease. *Med Devices (Auckl)*. 2014;7:73-81. doi: 10.2147/MDER.S59437 pmid: 24748825
- 8. Bogduk N. On the definitions and physiology of back pain, referred pain, and radicular pain. *Pain*. 2009;**147**(1-3):17-19. doi: 10.1016/j.pain.2009.08.020 pmid: 19762151
- 9. Cohen SP. Sacroiliac joint pain: a comprehensive review of anatomy, diagnosis, and treatment. *Anesth Analg.* 2005;**101**(5):1440-1453. **doi:** 10.1213/01.ANE.0000180831.60169.EA **pmid:** 16244008
- 10.Kiapour A, Joukar A, Elgafy H, Erbulut DU, Agarwal AK, Goel VK. Biomechanics of the Sacroiliac Joint: Anatomy, Function, Biomechanics, Sexual Dimorphism, and Causes of Pain. *Int J Spine Surg.* 2020;14(Suppl 1):3-13. doi: 10.14444/6077 pmid: 32123652
- 11.Geraci Jr MC. Overuse injuries of the hip and pelvis. J Back Muscul Rehabilit. 1996;6(1):5-19. doi: 10.3233/BMR-1996-6103
- 12.Laslett M, Aprill CN, McDonald B, Young SB. Diagnosis of sacroiliac joint pain: validity of individual provocation tests and composites of tests. *Man Ther.* 2005;10(3):207-218. doi: 10.1016/j.math.2005.01.003 pmid: 16038856
- 13.Fukui S, Nosaka S. Pain patterns originating from the sacroiliac joints. J Anesth. 2002;16(3):245-247. doi: 10.1007/s005400200033 pmid: 14517649
- 14.Soleimanifar M, Karimi N, Arab AM. Association between composites of selected motion palpation and pain provocation tests for sacroiliac joint disorders. J Bodyw Mov Ther. 2017;21(2):240-245. doi: 10.1016/j.jbmt.2016.06.003 pmid: 28532864
- 15. Robinson HS, Brox JI, Robinson R, Bjelland E, Solem S, Telje T. The reliability of selected motion- and pain provocation tests for the sacroiliac joint. *Man Ther.* 2007;**12**(1):72-79. **doi:** 10.1016/j.math.2005.09.004 **pmid:** 16843031
- 16.Rashbaum RF, Ohnmeiss DD, Lindley EM, Kitchel SH, Patel VV. Sacroiliac Joint Pain and Its Treatment. *Clin Spine Surg.* 2016;**29**(2):42-48. doi: 10.1097/BSD.0000000000000359 pmid: 26889985
- 17. Ou-Yang DC, York PJ, Kleck CJ, Patel VV. Diagnosis and Management of Sacroiliac Joint Dysfunction. *J Bone Joint Surg Am.* 2017;**99**(23):2027-2036. doi: 10.2106/JBJS.17.00245 pmid: 29206793

8 Sacroiliac Joint Dysfunction and Hip Adductor Tightness

- 18. Dreyfuss P, Michaelsen M, Pauza K, McLarty J, Bogduk N. The value of medical history and physical examination in diagnosing sacroiliac joint pain. *Spine (Phila Pa 1976)*. 1996;**21**(22):2594-2602. doi: 10.1097/00007632-199611150-00009 pmid: 8961447
- 19. Kiel J, Kaiser K. Adductor Strain. StatPearls [Internet]. 2019.
- 20. Drew MK, Palsson TS, Izumi M, Hirata RP, Lovell G, Chiarelli P, et al. Resisted adduction in hip neutral is a superior provocation test to assess adductor longus pain: An experimental pain study. *Scand J Med Sci Sports*. 2016;26(8):967-974. doi: 10.1111/sms.12529 pmid: 26247618
- 21. Rahimi A, Arab AM, Nourbakhsh MR, Hosseini SM, Forghany S. Lower limb kinematics in individuals with chronic low back pain during walking. J Electromyogr Kinesiol. 2020;51:102404. doi: 10.1016/j.jelekin.2020.102404 pmid: 32120055
- 22. Kurosawa D, Murakami E, Aizawa T. Groin pain associated with sacroiliac joint dysfunction and lumbar disorders. *Clin Neurol Neurosurg*. 2017;**161**:104-109. doi: 10.1016/j.clineuro.2017.08.018 pmid: 28866262
- 23.Brolinson PG, Kozar AJ, Cibor G. Sacroiliac joint dysfunction in athletes. *Curr Sports Med Rep.* 2003;2(1):47-56. doi: 10.1249/00149619-200302000-00009 pmid: 12831676
- 24.Ross J. Is the sacroiliac joint mobile and how should it be treated? *Br J Sports Med.* 2000;**34**(3):226. doi: 10.1136/bjsm.34.3.226 pmid: 10854029
- 25. Elattar O, Choi HR, Dills VD, Busconi B. Groin Injuries (Athletic Pubalgia) and Return to Play. *Sports Health.* 2016;8(4):313-323. doi: 10.1177/1941738116653711 pmid: 27302153
- 26.Serner A, Mosler AB, Tol JL, Bahr R, Weir A. Mechanisms of acute adductor longus injuries in male football players: a systematic visual video analysis. Br J Sports Med. 2019;53(3):158-164. doi: 10.1136/bjsports-2018-099246 pmid: 30006458
- 27. Toyohara R, Kurosawa D, Hammer N, Werner M, Honda K, Sekiguchi Y, et al. Finite element analysis of load transition on sacroiliac joint during bipedal walking. *Sci Rep.* 2020;**10**(1):13683. **doi:** 10.1038/s41598-020-70676-w **pmid:** 32792529
- 28.Leighton RD. A functional model to describe the action of the adductor muscles at the hip in the transverse plane. *Physiother Theory Pract.* 2006;**22**(5):251-262. doi: 10.1080/09593980600927385 pmid: 17118893