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ABSTRACT 

Background. The aim of this study was to investigate the effect of eight weeks of HIIT and blood flow restricted 

(BFR) on protein expressions (VEGF and eNOS) in vastus lateralis of male runners. For this purpose, 15 runners (age: 

23±3) voluntarily participating in this study were divided into three groups: 1) Control 2) HIIT and 3) HIIT+BFR. 

Methods. The experimental groups were practicing (three sessions a week and six attempts each session for eight 

weeks). Before and at the end of eight weeks, the biopsy samples were collected from vastus lateralis muscle and the 

protein expression levels of the VEGF and eNOS were studied by immunohistochemical method. Results. The findings 

of this study showed that the levels of the VEGF and eNOS were significantly increased in the experimental groups 

compared to the control group (p<0.001). There was also a significant difference between experimental groups in the 

VEGF protein expressions (p<0.05). Conclusion. In conclusion the HIIT and BFR training can effectively increase 

the protein expression levels of the VEGF and eNOS in vastus lateralis muscle of runners. 
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INTRODUCTION 

In recent years, several studies have focused 

on specific forms of exercise, such as the high 

intensity intermittent training (HIIT) and blood 

flow restricted (BFR) that have examined the 

impact of these exercise models mainly on 

functional and behavioral Physiological variables 

(1-3). HIIT are used in the form of vigorous 

repetition exercises (generally with intensity 

exceeding 80% of maximum heart rate), along 

with alternate recovery periods, as a substitute for 

traditional endurance training (4). BFR exercises 

also as a training types via reducing local blood 

flow, lead to the accumulation of metabolic 

elements (5). Both the practice models can lead to 

adaptive responses in long term. Skeletal muscle 

angiogenesis is one of the adaptation responses 

that reduce exercise induced stress (6). 

Angiogenesis is called the formation of new 

capillaries from existing vessels (7) and is a 

multifactorial process that can be identified only 

by understanding the molecular basises (6). 

Multiple-fold increase in blood flow during 

exercise result in increased shear stress and lead 

to upregulation of eNOSmRNA (nitric oxide 

synthase mRNA) and protein expression (6). 

VEGF is also an important angiogenic factor that 

has been reported following an acute bout of a 

range of exercise modalities including: 

submaximal cycling exercise (8), HIIT (9), and 

sprint interval training (SIT) (10) increased 

expression at the mRNA levels. The increased 

expression of VEGF mRNA has been 
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demonstrated between zero and six hours after the 

end of exercise, with levels returning to baseline 

within 20 -24 hours (11, 12) and is decreased 

following a period of training (12, 13). In 

comparison to mRNA expression, the muscle 

VEGF protein response to an acute bout of 

exercise and period of training is not well clear. 

Some reports show following an acute bout of 

submaximal continuous cycling a decrease (14) or 

no change in protein levels immediately (15) and 

up to two hours post exercise (8), whereas, other 

studies have demonstrated an increase in protein 

levels 2-4 hours post exercise (15, 16). However, 

in humans no increase in basal VEGF protein 

content have been reported following 4-8 weeks 

of either continuous or HIIT (9, 13, 17), 

Nevertheless, at one study did identify an increase 

in VEGF protein following short term (10 days) 

one legged knee extensor exercise (18). However, 

there were uncertainties about the impact of a 

course of HIIT on angiogenic factors yet. 

On the other hand, the application of BFR can 

involve multiple primary contractile stimuli 

including: shear stress (19), skeletal muscle 

hypoxia (20), metabolic stress (21) and oxidative 

stress (22), all of which are important stimuli of 

angiogenesis. In a recent investigation, the BFR 

stimulus is applied as an additional stimulus in the 

recovery intervals during an interval training 

program (23). In this study 8 trained cyclists 

undertook one session of SIT either alone or with 

2 min of post-exercise BFR during the recovery 

intervals on ergometer and did not observe any 

significant differences between two practice 

methods in VEGF or eNOS mRNA expression 

post-exercise. In another research, 21 trained 

male cyclists (VO2max = 62.8 ml.min-1.kg-1) 

undertook 4 weeks of SIT either alone (n = 10) or 

with post-exercise BFR (n = 11) (24). The results 

of this study despite the tendency to increase 

VEGF levels in the SIT+BFR group, did not 

reveal any changes in vastus lateralis muscle 

capillarity. The results of the study by Conceicao 

et al. (2016) also show that muscle VEGF mRNA 

expression occurs at a higher level after 

performing a single session of intense endurance 

training compared to moderate endurance training 

with BFR on an ergometer. 

Due to the lack of sufficient information about 

the interactive effects of HIIT and BFR exercises 

on angiogenic variables of skeletal muscle, it 

seems that integration these training models can 

influence skeletal muscle angiogenesis in the long 

term over the individual application of each of 

these training methods. Since there is a growing 

scope for identifying and adopting new compact 

exercise methods that show greater adaptation 

responses, therefore the aim of present study was 

to assess combining HIIT and BFR effect on the 

immunohistochemical expression of angiogenic 

markers (VEGF and eNOS) of vastus lateralis in 

male mid-endurance runners. 

MATERIALS AND METHOD 

Study Design. The present applied research, 

semi-experimental study with inter-group design 

was conducted on med-endurance runners who 

were active under the supervision of the athletic 

board of Amol city-Iran in order to assess the effects 

of HIIT and HIIT+BFR on angiogenic factors 

(VEGF and eNOS) in vastus lateralis muscle. 

Subjects. All experimental procedures were 

approved by the Mazandaran University Ethics 

Approvals (Human Participants) Sub-Committee 

(IR. UMZ. REC. 1397.048) and conformed in all 

respects with the Declaration of Helsinki. 

Participants were fully informed of the risks and 

discomforts associated with all experimental 

trials before providing written, informed consent. 

15 amateur semi-endurance male runners (age 23 

± 3 yr) that worked in 800 and 1500 materials, 

volunteered to take part in the study. Inclusion 

criteria for this study were: having at least two 

years of training experience, not taking any 

ergogenic ingredients and supplements for at least 

six months, be full health and having a BMI 

below 25. In a pre-training briefing session about 

the research performing process, advices and 

recommendations were made and anthropometric 

measurements of runners including height, 

weight and limb length were recorded in the 

Physiology Laboratory of Mazandaran University 

(Table 1). Then runners were categorized into 

homogeneous groups through Bruce exhausting 

test and after recording the records, the runners 

were divided into three groups (n = 5) of control 

(Con), HIIT and HIIT + BFR. 
 

Table 1. Anthropometric Characteristics of Runners 

Weight Height BMI Subcutaneous Fat Thickness Waist Circumference Thigh Environment Foot Length 

4 kg    ± 73 5 cm   ± 172 1.7 ±   23 3.1  ±   11.2 4.5 cm  ± 92 7.2  ± 67 6.5  ± 102 



The Effects of HIIT and BFR on Muscle Angiogenesis         3 

Exercise Training Program. Unlike the control 

group did not participate in any training programs, 

experimental groups (HIIT and HIIT + BFR) had to 

practice the 10-20-30 exercise pattern for eight 

weeks and three sessions per week. The 10-20-30 

training consisted of a 15-min warm-up at a low 

intensity followed by 6 × 5 min running periods 

interspersed by 2 min of rest. Each 5-min running 

period consisted of five consecutive 1-min intervals 

divided into 30, 20, and 10 s at an intensity 

corresponding to ∼30%, ∼60%, and ∼90-100% of 

maximal running speed. The difference between the 

experimental groups was that the HIIT+BFR group 

had to install 12 cm wide bands at the upper thighs 

of both legs when performing the exercise and 

during the two-minute breaks would put them away. 

Experimental Protocol. All of the runners in 

the experimental group were present in the 

medical laboratory 72 hours before the start of 

training and 72 hours after the last exercise 

session and needle biopsy were taken from them. 

The control group was sampled only at the first 

time. At first to perform the needle biopsy, each 

subject would lie open vault mode. Then the 

desired position was the external anterior lower 

third part vastus lateralis muscle, was injected and 

anesthetized with a syringe containing lidocaine. 

In the next step, using a biopsy needle, 1.6 mm 

slices were removed from the muscle and was 

rapidly discharged into the formalin-containing 

falcon tubes. Tissue samples were stored in these 

tubes for one month and then transferred to 

histological laboratory for immunohistochemistry 

studies. After transferring samples to histological 

laboratory, immunohistochemical expression of 

VEGF and eNOS proteins by Envision method 

and using VEGF (code SC-7269 manufactured by 

Santa Cruz company of America, the accuracy of 

measurement 200 µg/ml) and eNOS (code Ab-

76198 manufactured by Abcam company of 

America, the accuracy of measurement 300 

µg/ml) specific antibodies were measured. 

Statistical Analysis of Data. The 

Kolmogorov-Smirnov and Levene tests were 

used to ensure normal distribution of data and 

equality of error variances, respectively. The 

covariance analysis test was also used to examine 

intra-group changes. Statistical analysis was 

performed using software SPSS. 20 and p<0.05 

was considered as the level of significance. 

RESULTS 

VGEF. ANCOVA revealed that the effect of 

groups was significant (f2,11 = 70.83, p<0.001, 

Ƞ2=0.93); so that, VEGF increased significantly 

(p<0.001) in both HIIT (47.07±1.84) and HIIT+BFR 

(53.96±1.95) groups in comparison with control group 

(22.92±1.87). Besides, the difference of HIIT and 

HIIT+BFR was also significant (p=0.03) (Figure 1). 

Immunohistochemical expression of VEGF 

protein of the vastus lateralis muscle cells have been 

shown for experimental and control groups (Figure 2). 

eNOS. ANCOVA revealed that the effect of 

groups was significant (f2,11=181.5, p<0.001, 

Ƞ2=0.97); so that, eNOS increased significantly 

(p<0.001) in both HIIT (50.10±1.11) and 

HIIT+BFR (51.42±1.17) groups in comparison 

with control group (23.34±1.15). But the 

difference of HIIT and HIIT+BFR was not 

significant (p=0.43) (Figure 3). 

In Figure 4 has been shown 

immunohistochemically expression of eNOS  

protein of the vastus lateralis muscle cells for 

experimental and control groups. 

 

 
Figure 1. The Effect of 8 Weeks High Intensity IntermittentTraining and Blood Flow Restriction on Muscular VEGF Protein Expression of Male 

Runners. Covariates Appearing in the Model Are Evaluated at the Following Values: eNOS. preTest=24.8267. HIIT: high intensity intermittent 

training; BFR: blood flow restriction. *Significant different from Control group at p<0.001. #Significant different from HIIT at p=0.03. 
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Figure 2. The Effect of 8 Weeks High Intensity Intermittent Training and Blood Flow Restriction on Muscular VEGF Protein Expression 

of Male Runners. Immunohistochemical Expression of VEGF in Vastus Lateralis Muscle Cells of Experimental and Control Groups. 

Green Spots Indicate VEGF Protein Expression. 

 

 
Figure 3. The Effect of 8 Weeks High Intensity Intermittent Training and Blood Flow Restriction on Muscular eNOS Protein Expression 

of Male Runners. Covariates Appearing in the Model Are Evaluated at the Following Values: eNOS. PreTest=24.8267. HIIT: high 

intensity intermittent training; BFR: blood flow restriction. *Significant different from Control group at p<0.001. 

 

 
Figure 4. The Effect of 8 Weeks High Intensity Intermittent Training and Blood Flow Restriction on Muscular eNOS Protein Expression 

of Male Runners. Immunohistochemical Expression of eNOS in Vastus Lateralis Muscle Cells of Experimental and Control Groups. 

Green Spots Indicate VEGF Protein Expression. 

 

DISCUSSION 
The purpose of this study was to investigate 

the effect of eight weeks of HIIT and BFR 

training on VEGF and eNOS protein expressions 

in the vastus lateralis muscle of male med-

endurance runners.  The results of the present 

study show that the expression of VEGF and 

eNOS proteins increased significantly after eight 

weeks of HIIT and HIIT+BFR training compared 

to the control group. Contrary to the results, 

Michel et al (2018) did not report any change in 

the capillarization markers of well-trained cyclist 

menۥ  vastus lateralis muscles (Vo2max = 62.8) that 

performed SIT alone or in combination with BFR 

for four weeks. The inconsistency of the results is 

probably related to factors such as the level of 

physical fitness of the subjects, the volume of 

exercises and the type of exercise protocol. In the 

study of Michel et al (2018), the training protocol 

was conducted twice a week for four weeks using 

cycle ergometer in professional cyclists, whereas 

in the present study, 10-20-30 training sessions 

were performed three times a week over eight 

weeks by amateur med-endurance runners. In 

humans it is generally considered that 
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angiogenesis manifests later than after 4-5 weeks 

of training (25) and based on the available 

evidences, exercise training volume or the total 

amount of time devoted to exercise affects 

capillary adaptations (6). In the current study, use 

of BFR exercises was also performed by 

installing stretch bands during the run training 

which differs to the mentioned study when 

applied it between the recoveries of SIT intervals. 

Taylor et al. (2016b) demonstrated enhanced 

HIF-1α mRNA expression following a typical 

SIT session only when combined with post-

exercise BFR, however, they did not report any 

enhancements in either VEGF or eNOS mRNA 

expression three hours post-exercise with the 

addition of BFR. The mentioned research 

suggests that post-exercise BFR is not a sufficient 

stimulus to enhance transcription of these genes. 

These findings are in contrast to BFR applied 

during low load resistance-type or low intensity 

endurance-type exercise, which has been shown 

to enhance the acute expression of both PGC-1α 

and VEGF mRNA (2, 22). The exercise protocols 

in the aforementioned studies undertaken alone 

did not elicit increases in VEGF mRNA and only 

elicited modest increases in PGC-1α mRNA 

expression of ~2-fold, compared to the 5-fold 

increase following SIT in the study of Taylor et 

al. (2016b). Therefore, it seems likely that when 

combined with standard intensity training 

protocols, which are already potent stimuli of 

these genes, there is reduced capacity of BFR 

protocols to further increase the transcriptional 

response. Exercise induced angiogenesis occurs 

by a combination of growth factors, hypoxia, 

shear stress and mechanical stress (6). Studies 

suggest that angiogenic signals start from within 

the contracting muscle and PGC-1α as a master 

regulator of angiogenesis is involved in this 

process by interacting to the last nuclear receptor 

(ERRα). Mechanistically, the functional role of 

PGC-1α in VEGF expression in response to 

exercise training depends on its upstream cascade 

or P38MAPK (26). Since ROS production is 

increased during HIIT execution, so it results in 

more activation of P38MAPK (27) which may 

eventually lead to more VEGF expression. On the 

other hand, increased blood flow to the blood 

vessel bed during exercise increases shear stress, 

which is a potential stimuli for increased NO and 

eNOS expressions (28, 29). In consistent to the 

results of this study, there are studies have 

assessed the effects of SIT on angiogenic factors 

(VEGF and eNOS) (8, 30). Hoier et al. (2013) 

studied effects of four weeks of SIT on a cycle 

ergometer in healthy subjects that established to 

increase VEGFmRNA and eNOS expressions. In 

the other study, have assessed the structural and 

endothelial enzymatic changes in skeletal muscle 

micro-vessels of sixteen young sedentary males in 

response to ET and SIT for six weeks by Cocks et 

al. (2013). The expression levels of eNOS 

increased in both groups, with a significantly 

greater increase observed following SIT. 

However, in the present study unlike the VEGF 

protein values, the difference between the 

experimental groups (in eNOS protein 

expression) did not reach a significant level. It 

seems this discrepancy is related to BFR training 

which did not induce the adequate amount of 

shear stress. In other words, the use of flexible 

bands during HIIT training could not lead to the 

reactive hyperemia in artery beds when bond 

pressure was removed during in recoveries. BFR 

applied during exercise and at rest has been 

shown to elicit multiple adaptive signals, i.e. 

increased shear stress, reduced muscle 

oxygenation and increased markers of oxidative 

stress, all of which are considered key stimuli of 

exercise induced angiogenesis and mitochondrial 

biogenesis (20, 22, 31). Therefore, although the 

BFR used in the present study compared with the 

HIIT alone did not significantly affect the 

expression of eNOS protein, however, due to the 

significant increase in VEGF protein expression 

in the HIIT+ BFR group compared to HIIT, it 

seems other angiogenic pathways were 

incrementally affected and evoked. 

Studies have demonstrated a greater 

proliferative effect arising from continuous 

moderate intensity exercise than intense interval 

training (9) and a reduction in skeletal muscle 

VEGF protein content when trained runners 

increased bouts of intense exercise at the expense of 

total training volume (17). These investigations 

suggest that training volume as opposed to training 

intensity is a greater stimulus for angiogenesis in 

already trained individuals, at least in the short term. 

Gliemann (2016) proposed that one reason for a 

reduction in the angiogenic stimulus with a reduced 

training volume was the reduction in the shear stress 

stimulus. Shear stress is a product of both magnitude 

and duration, but although high levels of shear stress 

are elicited during intense intervals, it seems likely 

that this is outweighed by the prolonged stimulus 

continuous moderate intensity exercise elicits (32). 
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In general, angiogenesis is a complex process 

involving a series of inhibitory-excitatory signaling 

cascades involved in this process. Therefore, the 

regulation of angiogenesis is not dependent on one 

or two factors and there are still need to more exact 

investigations. In conclusion the results of the 

present study indicate that an eight-week course of 

HIIT and HIIT+BFR can increase the expression of 

the VEGF and eNOS proteins in the vastus lateralis 

muscle of male med-endurance runners. 

APPLICABLE REMARKS 
• The training methods used in this article by 

increase in muscle protein (VEGF and eNOS) 

expressions, lead to optimal muscle adaptations 

that can affect athletes' adaptability to HIIT and 

HIIT+BFR. 
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