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ABSTRACT

Background. Sport results predictive analysis is based on betting apps,outcome$,and has not yet
been examined academically by concerned organizations in Motocco. Objectives. This study aims
to predict a football national league ranking using a Machine Learning regression model with
Elastic Net algorithm, where we determine the important features’ weight on prediction. Methods.
A dataset of historical scores of 8 standing teams since the 2009/2010 season was manually filled
in and categorized into 9 columns: season, téam, points, goal difference (+/-), matches played (M),
matches won (W), matches drawan, (D), matchesilest (L)pgoals for (F) and goals against (A). Then
preprocessed into Categoricalddata, categorical Hash,and numerical. Results. the machine learning
analysis results in R? score ©0.999, NRMSE=0.001 andiSpearman correlation = 0.997. However,
the predicted ranking was eorreet about 5 from 8 compared to the actual results till the 2021/2022
season. ConclusionsThe Ranking prediction,has been accurate by 75% in actual results compared
to the regression.analysis‘outcomes: This provesithe quality of data needs to be more precise by
including other‘parameters.

Keywords: Football Rafiking, Machine Learning, Regression, Prediction.

INTRODUCTION

Football,scores and results prediction has been the focus center of the tipster and betting market
experts (1);and hasybecome the more important center of interest for coaches, sports scientists,
analysts, and performange,specialists; to design the best practice, training, and competition tasks
(2-4).

Therefore, researchers have begun applying mathematical formulas and statistics (5) to predict the
outcomes, while machine learning and intelligent algorithms have become commonly used (6) and
treating the football results as a classification problem with one class to predict (win, lose, or draw).
But other researchers considered the problem a numerical value to predict in a regression model
based on numerical analysis and values to predict specifically distance traveled (7) or the
performance realized by athletes in jumping and throwing.

The sport results prediction problem lies in the data to gather, and the input features to consider
impactful on the outcomes. Some researchers have focused on teams’ historical data such as points
of the team, goal difference, matches won, drawn, lost, goals for and goals against (8); while (9)
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used more prediction criteria as a condition of the team in recent weeks and in the league, quality
of the opponent in the last matches and week of match. More external features such as managerial
change, fatigue, and club budget have been considered by (10) to predict the Dutch football
competition, and a recent technique based on players rating scores related to their abilities on each
team has resulted in a performing forecasting model (11-13) to predict the winner of the European
champions league.

Regression analysis

Regression analysis (14) in machine learning is a type of supervised deatning to determine the
relationship between variables (features) with inputs and known outputs to predict (the team's
scores in our case of study). the Elastic Net algorithm has gained significant attention in recent
years due to its ability to handle high-dimensional datasets and address thelimitations ef traditional
regression methods. And proven to be efficient in one-glass classification machine learning
analysis (15) and likewise used in human action recognition inxeal-timesactivity monitoring (16).
The Elastic Net algorithm provides a powerful approach for regression analysisy combining the
prediction ability for numerical values, and is usually usedyin sport performance studies(17)

MATERIALS AND METHODS

Data collection

A dataset has been manually transcribed into an Excel file from these'two web sources:
www.footballdatabase.combhh

www.flashscore.com

The feature selection is basedfonnthe common data of teams: points, goal difference, total of
matches played, matches won, matches drawn, matches lost, goals for, and goals against. These
values have been recorded from the season 2009/2010 tilli2021/2022 and we created a table with
average scores; wheredwe maintainednly the 8'standing teams in all the seasons we collected as
shown in the table below:

Table 1. Average scoxes for the standing teams from the 2009/2010 season

Club P12 +H12 M/12 W/12 D/12 L/12 F/12 A/12
WAC €asablanca 5533 18.58 30.00 15.25 9.58 4.77 4217 23.58
RCA 53.75 18.08 29.83 14.92 9.00 546 43.92 25.83
D.H. ElJadida 41.83 458 29.83 1025 11.08 7.85 31.75 27.17
Hassania Agagir 39.08 -1.08 29.92 950 1058 9.08 31.67 32.75
FAR Rabat 43.17 475 29.92 1092 1042 7.92 34.00 29.25
Moghreb Tétouan 4150 1.83 29.92 10.33 1050 8.38 31.58 29.75
FUS Rabat 4408 4.83 29.83 11.17 1058 7.46 30.92 26.08

Olympic Club de Safi 36.67 -5.83 29.83 8.67 10.67 9.69 29.00 34.83

P/12: mean points scores for 12 seasons. +/-: goal difference. M: matches played. W: matches won.
D: matches drawn. L: matches lost. F: goals for. A: goals against.

Procedure and analysis
We run a machine learning job in Microsoft Azure Machine Learning Studio, where we uploaded
the original dataset containing all the seasons as a csv file, with normalized root mean squared
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80 error (NRMSE) as a primary metric to evaluate the model. The data transformation process and
81 the applied algorithms are shown in the figure below:
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128  comparison of two “W” feature importance in two different seasons.
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Prediction

In a regression mode a numerical value that is considered as a label. In our
method of analysis o we can define the team in a JSON file and
obtain the value parison with the actual outcomes. The tables
below highlig on 2021/2022 with actual outcomes.

by 2021/2022 season: actual ranking.
M W D L F A Actual 2021/2022

29 19 6 4 45 22 1st

29 17 8 4 41 21 2nd

29 8 11 10 31 40 9th

29 9 6 14 26 30 10th

8 29 12 9 8 37 29 3d

0O 0 0O O O o0 o out

FUS Rabat 40 3 29 10 10 9 32 29 Sth
OlympicClubdeSafi 38 2 29 9 11 9 29 27 7th

Table 3. Regression values and ranking prediction for the 2021/2022 season.
Club Regression values  Predicted from 12 yrs  Actual 2021/2022

WAC Casablanca 123.49 1st 1st
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RCA 119.37 2nd 2nd

D.H. ElJadida 98.44 4th 9th
Hassania Agadir 92.84 7th 10th
FAR Rabat 102.53 3d 3d
Moghreb Tétouan 69.21 out out
FUS Rabat 96.86 5th 5th
Olympic Club de Safi 93.53 6th 7th
145
146
147 Table 4. Regression values and ranking prediction for the 2022/2023 season.
Club Regression values Predicted from 13 yrs
WAC Casablanca 116.1878453 1st
RCA 102.2777284 3rd
D.H. ElJadida 92.17679822 6th
Hassania Agadir 89.2303382 7th
FAR Rabat 111.6901356 2nd
FUS Rabat 97.28467347 4th
Olympic Club de Safi 92.84940406 5th
148

149  Based on the collected data till two weeks before the league championship ends, the predictive
150  regression analysis shows the promising teams for,standing where the 8™ standing team will leave
151  the first pro league (out) in Table 3"and doesn’t appear in Table 4. Other teams have raised from
152 the second league and dispute the standing with the remaining teams from the 2009/2010 season.

153

154

155 Botola Pro 2022/2023

156 Morocco

157 See pastcompetitions hd
153 Standings
159 e Total
160 e Home
161 e Away
# Club P +- M W D L F A
1 FAR Rabat 67 31 30 20 7 3 50 19
2 Wydad Casablanca 66 26 30 19 9 2 47 21
3 FUS Rabat 5 20 30 15 10 5 36 16
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# Club P +- ™M W D L F A

4 Olympic Club de Safi 47 6 30 12 11 7 34 28

5 RCA Raja Casablanca Athletic 44 5 30 11 11 8 31 26

6 RSB Berkane 4 2 30 11 11 8 31 29

7 Hassania Agadir 39 1 30 10 9 11 30 29

8 Union de Touarga 36 -6 30 9 9 12484 40
DISCUSSION

Regression analysis turns out the most accurate way to predict, sanking sincenth€ scores are
numerical values based on historical data collected for 13 years. And'the predicted values represent
the highest scores for the top-ranking teams ingquantitative order, which aims' through this case
study to understand the variables influencing a team’s’performance and it$yposition in the league
table. Furthermore, many other features can'directly impact the“team's performance as player
attributes, match statistics in possession and attack efficacity, management change, and player
physiological abilities after and before each match(l8,19). Taking into consideration these facts,
our dataset is built on historical data of the teams andshas disregarded the players' and managers'
contributions to the team's performance in'strategies and taeties (20).

Prediction accuracy was significant'in this study due, to the quality of the data gathered and
preprocessing method adopted. The predicted values “ate correct by 6 out of 8 taking into
consideration the 7™ agfual position missed by onerank, which represents around 75% of accuracy.
This difference could be impacted by changesimade in team structure as players transfer, players
injured and substitutions to'take into consideration:

CONCLUSION

Sports etiteomes prediction has become the most common tool for the actors working in this field,
clubdnanagers; team’s coach, tipsters, and bookies relay on the continuous data flow and real time
analysis (21). In our case, we useéd the Moroccan national football league standing teams during
13 yearssince2009/2010 season, based on their historical scores to predict the ranking in the end
of 2021/2022 and 2022/2023 season. The last ranking prediction must be compared to the final
results when“the season‘eénds. Moreover, players’ features and teams’ structure could create a
powerful featuresyselection to obtain more accurate results.

APPLICABLE REMARKS
e Teams could use the predictive analysis to plan their training sessions and tactics against
the away teams.
e Relay on data about other teams to consider the strength and weakness position during a
season.
e Explore more predictive analysis as classification to determine the winning probability
before and during a match based on historical and real-time data.
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