Volume 8 - Winter Supplementary                   Ann Appl Sport Sci 2020, 8 - Winter Supplementary: 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lim W. Appropriateness of Tibial Rotation for Isolation of the Medial and Lateral Hamstrings. Ann Appl Sport Sci 2020; 8 (S2)
URL: http://aassjournal.com/article-1-907-en.html
1) Department of Physical Therapy, Rehabilitation Science Faculty, Woosong University, Daejeon, Republic of Korea. 2) Woosong Institute of Rehabilitation Science, Rehabilitation Science Faculty, Woosong University, Daejeon, Republic of Korea , wootaeklimpt@wsu.ac.kr
Abstract:   (2923 Views)
Background. It is unclear whether the clinical use of tibial rotation to measure the strength of the medial hamstrings and lateral hamstrings in isolation is based on sound scientific evidence or is simply based on anatomical features.
Objectives. To verify the appropriateness of tibial rotation for isolation of the medial hamstrings and lateral hamstrings, the participants performed neutral rotation (NR), external rotation (ER), and internal rotation (IR).
Methods. Forty-six young and healthy adults (age 21.9 ± 2.2 years, height 167.9 ± 8.6 cm, the weight of 63.8 ± 13.9 kg) participated in the study. The electromyography (EMG) activity and knee flexion torque were measured and compared among different postures; NR, ER, and IR.
Results. The Max of the EMG activity of the biceps femoris long head, semitendinosus, and semimembranosus muscles was significantly reduced in ER and IR compared with that in NR. There were no significant differences in muscle activity between ER and IR. Knee flexion force and torque were significantly reduced in IR compared with those in NR and ER. EMG activity was significantly diminished during tibial rotation compared with that in NR.
Conclusion. Contrary to the general assumption, IR and ER had a limited influence on the isolation of medial hamstrings and lateral hamstrings; thus, they may be unnecessary for medial hamstrings and lateral hamstrings normalization. The uniform training of the hamstring muscles in NR for MVIC may be more appropriate than isolating the muscles in ER and IR.
Full-Text [PDF 374 kb]   (850 Downloads)    
 
 
APPLICABLE REMARKS
  • It is suggested that uniform assessment and rehabilitation for the MH and LH in NR may be efficient in the clinical (or sports) setting, requiring maximum or equivalent high-intensity resistance training.

Type of Study: Original Article | Subject: Kinesiology and Sport Injuries
Received: 2020/07/13 | Accepted: 2020/09/13

References
1. Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA. Muscles: Testing and Function, with Posture and Pain. 5th ed.: Baltimore, MD: LWW; 2005.
2. Avers D, Brown M. Daniels and Worthingham's Muscle Testing: Techniques of Manual Examination and Performance Testing. 10th ed.: Saunders; 2018.
3. Fiebert IM, Spielholz NI, Applegate EB, Carbone M, Gonzalez G, Gorack WM. Integrated EMG study of the medial and lateral heads of the gastrocnemius during isometric plantar flexion with varying cuff weight loads. J Back Musculoskelet Rehabil. 1998;11(1):19-26. https://doi.org/10.1016/S1053-8127(98)00020-7 [DOI:10.3233/BMR-1998-11103]
4. Hanten WP, Schulthies SS. Exercise effect on electromyographic activity of the vastus medialis oblique and vastus lateralis muscles. Phys Ther. 1990;70(9):561-565. [DOI:10.1093/ptj/70.9.561] [PMID]
5. LeVeau BF, Rogers C. Selective training of the vastus medialis muscle using EMG biofeedback. Phys Ther. 1980;60(11):1410-1415. [DOI:10.1093/ptj/60.11.1410] [PMID]
6. Mirzabeigi E, Jordan C, Gronley JK, Rockowitz NL, Perry J. Isolation of the vastus medialis oblique muscle during exercise. Am J Sports Med. 1999;27(1):50-53. [DOI:10.1177/03635465990270011601] [PMID]
7. Fiebert IM, Spielholz NI, Applegate EB, Fox C, Jaro J, Joel L. Comparison of EMG activity of medial and lateral hamstrings during isometric contractions at various cuff weight loads. Knee. 2001;8(2):145-150. [DOI:10.1016/S0968-0160(00)00079-X]
8. Worrell TW, Karst G, Adamczyk D, Moore R, Stanley C, Steimel B, et al. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles. J Orthop Sports Phys Ther. 2001;31(12):730-740. [DOI:10.2519/jospt.2001.31.12.730] [PMID]
9. Mohamed O, Perry J, Hislop H. Relationship between wire EMG activity, muscle length, and torque of the hamstrings. Clin Biomech (Bristol, Avon). 2002;17(8):569-579. [DOI:10.1016/S0268-0033(02)00070-0]
10. Albertus-Kajee Y, Tucker R, Derman W, Lamberts RP, Lambert MI. Alternative methods of normalising EMG during running. J Electromyogr Kinesiol. 2011;21(4):579-586. [DOI:10.1016/j.jelekin.2011.03.009] [PMID]
11. Fauth ML, Petushek EJ, Feldmann CR, Hsu BE, Garceau LR, Lutsch BN, et al. Reliability of surface electromyography during maximal voluntary isometric contractions, jump landings, and cutting. J Strength Cond Res. 2010;24(4):1131-1137. [DOI:10.1519/JSC.0b013e3181cc2353] [PMID]
12. Callaghan MJ, Oldham JA. A Critical Review of Electrical Stimulation of the Quadriceps Muscles. Critical Rev Physic Rehabilit Med. 1997;9(3-4):301-314. [DOI:10.1615/CritRevPhysRehabilMed.v9.i3-4.60]
13. Selkowitz DM. Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation. Phys Ther. 1985;65(2):186-196. [DOI:10.1093/ptj/65.2.186] [PMID]
14. Lim W. Easy method for measuring stretching intensities in real clinical settings and effects of different stretching intensities on flexibility. J Back Musculoskelet Rehabil. 2018. [DOI:10.3233/BMR-181243] [PMID]
15. Yin L, Chen K, Guo L, Cheng L, Wang F, Yang L. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study. PLoS One. 2015;10(6):e0128877. [DOI:10.1371/journal.pone.0128877] [PMID] [PMCID]
16. Perotto AO. Anatomical guide for the electromyographer: the limbs and trunk.: Charles C Thomas Publisher; 2011.
17. SENIAM [Internet]. Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles. 2020. Available from: http://www.seniam.org/.
18. Fiebert IM, Roach KE, Fingerhut B, Levy J, Schumacher A. EMG activity of medial and lateral hamstrings at three positions of tibial rotation during low-force isometric knee flexion contractions. J Back Musculoskelet Rehabil. 1997;8(3):215-222. https://doi.org/10.3233/BMR-1997-8306 [DOI:10.1016/S1053-8127(97)00022-5] [PMID]
19. Jonasson G, Helgason A, Ingvarsson T, Kristjansson AM, Briem K. The Effect of Tibial Rotation on the Contribution of Medial and Lateral Hamstrings During Isometric Knee Flexion. Sports Health. 2016;8(2):161-166. [DOI:10.1177/1941738115625039] [PMID] [PMCID]
20. Beyer EB, Lunden JB, Russell Giveans M. Medial and Lateral Hamstrings Response and Force Production at Varying Degrees of Knee Flexion and Tibial Rotation in Healthy Individuals. Int J Sports Phys Ther. 2019;14(3):376-383. [DOI:10.26603/ijspt20190376] [PMID] [PMCID]
21. Johnson AJP. A two-method comparison of muscle testing the serratus anterior: Daniels and Worthingham vs. Kendall and McCreary [PhD Thesis]. University of North Dakota; 1993.
22. Perry J, Easterday CS, Antonelli DJ. Surface versus intramuscular electrodes for electromyography of superficial and deep muscles. Phys Ther. 1981;61(1):7-15. [DOI:10.1093/ptj/61.1.7] [PMID]
23. Ekstrom RA, Soderberg GL, Donatelli RA. Normalization procedures using maximum voluntary isometric contractions for the serratus anterior and trapezius muscles during surface EMG analysis. J Electromyogr Kinesiol. 2005;15(4):418-428. [DOI:10.1016/j.jelekin.2004.09.006] [PMID]
24. Smith J, Padgett DJ, Kaufman KR, Harrington SP, An K-N, Irby SE. Rhomboid muscle electromyography activity during 3 different manual muscle tests. Arch Phys Med Rehabil. 2004;85(6):987-992. [DOI:10.1016/S0003-9993(03)00618-X]
25. Boettcher CE, Ginn KA, Cathers I. Standard maximum isometric voluntary contraction tests for normalizing shoulder muscle EMG. J Orthop Res. 2008;26(12):1591-1597. [DOI:10.1002/jor.20675] [PMID]
26. Mohamed O, Perry J, Hislop H. Synergy of medial and lateral hamstrings at three positions of tibial rotation during maximum isometric knee flexion. Knee. 2003;10(3):277-281. [DOI:10.1016/S0968-0160(02)00140-0]
27. Enoka RM. Muscle strength and its development. New perspectives. Sports Med. 1988;6(3):146-168. [DOI:10.2165/00007256-198806030-00003] [PMID]
28. Hughes RE, Chaffin DB, Lavender SA, Andersson GB. Evaluation of muscle force prediction models of the lumbar trunk using surface electromyography. J Orthop Res. 1994;12(5):689-698. [DOI:10.1002/jor.1100120512] [PMID]
29. Adouni M, Shirazi-Adl A, Marouane H. Role of gastrocnemius activation in knee joint biomechanics: gastrocnemius acts as an ACL antagonist. Comput Methods Biomech Biomed Engin. 2016;19(4):376-385. [DOI:10.1080/10255842.2015.1032943] [PMID]
30. Worrell TW, Denegar CR, Armstrong SL, Perrin DH. Effect of body position on hamstring muscle group average torque. J Orthop Sports Phys Ther. 1990;11(10):449-452. [DOI:10.2519/jospt.1990.11.10.449] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb