year 12, Issue 2 (Summer 2024)                   Ann Appl Sport Sci 2024, 12(2): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kistak Altan B, Ilhan Odabas H, Hakan M T, Zeybek S U. The Relationship of Blood Lactate Level and Swimming Performance with MCT1 after Critical Velocity. Ann Appl Sport Sci 2024; 12 (2)
URL: http://aassjournal.com/article-1-1313-en.html
1- Department of Sports Management, Faculty of Sport Sciences, Halic University, İstanbul, Turkey.
2- Department of Sports Management, Faculty of Sport Sciences, Halic University, İstanbul, Turkey. , ilhanodabas@halic.edu.tr
3- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
Abstract:   (667 Views)
Background. The investigation into whether the MCT1 gene in swimming and the inclusion of exercises involving critical velocity in water warm-ups have an effect on performance is ongoing.
Objectives.
This study aims to examine the relationship between swimming performance and blood lactate level with MCT1 after critical velocity.
Methods. 33 girls and 27 boys were included in the study. Intraoral swab and intraoral buccal swap samples were taken from the participants to be used for MCT1 gene analysis by the expert with transport swab, which can be used in DNA analysis. After DNA isolations, MCT1 gene polymorphisms were performed with Real-time PCR. After resting, the resting blood lactate levels (LArest) were taken from the fingertips with Lactate Scout+. Then, the swimmers performed a water warm-up with critical velocity and were taken to the 4 repetitions of the 50-meter (m) individual medley maximal swimming test. Immediately after the test, the blood lactate levels were taken at the 1st (LA1), 6th (LA6), and 15th (LA15) minute rest periods. The swimming test was recorded with a SJCAM camera. The end time was determined with Kinovea 0.9.5. IBM SPSS 24.0 program was used for data analysis. The relationship between blood lactate and swimming performance vs MCT1 dominant genotype and allele distribution was analyzed by Pearson correlation. The significance level was taken as p<0.05.
Results. No significant differences between LArest and performance vs MCT1 (p>0.05). A significant correlation was found between LA1, LA6, LA15 values vs MCT1 (p<0.05).
Conclusion. In conclusion, this study confirmed that there is a relationship between the MCT1 dominant genotype and blood lactate levels in swimmers, but this relationship with performance has not been confirmed.
Full-Text [PDF 858 kb]   (270 Downloads)    
 
 
APPLICABLE REMARKS
  • Although the MCT1 dominant genotype does not affect performance in swimmers, it is believed to have a significant impact on blood lactate levels.
  • Swimming coaches should be aware of the MCT1 dominant genotype when determining the anaerobic/aerobic threshold levels of swimmers with blood lactate levels.

Type of Study: Original Article | Subject: Sport Physiology and its related branches
Received: 2023/11/27 | Accepted: 2024/01/29

References
1. 1. Merezhinskaya N, Fishbein WN, Davis JI, Foellmer JW. Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport. Muscle & Nerve. 2000;23(1):90-97. https://doi.org/10.1002/(SICI)1097-4598(200001)23:1<90::AID-MUS12>3.0.CO;2-M [DOI:10.1002/(SICI)1097-4598(200001)23:13.0.CO;2-M]
2. Wang X, Liu H, Ni Y, Shen P, Han X. Lactate shuttle: from substance exchange to regulatory mechanism. Hum Cell. 2022;35:1-14. [DOI:10.1007/s13577-021-00622-z] [PMID]
3. Brooks GA. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. [DOI:10.1016/j.redox.2020.101454] [PMID] []
4. Zhu M, Kong F, Zhao Q. Exercise regulates lactic acid metabolism. Chin J Tissue Eng Res. 2023;27(2):322.
5. Ahmetov II, Fedotovskaya ON. Current progress in sports genomics. Adv Clin Chem. 2015;70:247-314. [DOI:10.1016/bs.acc.2015.03.003] [PMID]
6. Hostrup M, Bangsbo J. Performance adaptations to intensified training in top-level football. Sports Med. 2023;53(3):577-594. [DOI:10.1007/s40279-022-01791-z] [PMID] []
7. Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27:757-785. [DOI:10.1016/j.cmet.2018.03.008] [PMID]
8. Fedotovskaya ON, Mustafina LJ, Popov DV, Vinogradova OL, Ahmetov II. A common polymorphism of the MCT1 gene and athletic performance. Int J Sports Physiol Perform. 2014;9(1):173-180. [DOI:10.1123/ijspp.2013-0026] [PMID]
9. Massidda M, Eynon N, Bachis V, Corrias L, Culigioni C. Piras F, Cugia P, Scorcu M, Calò CM. Influence of the MCT1 rs1049434 on indirect muscle disorders/injuries in elite football players. Sports Med. 2015;1:33. [DOI:10.1186/s40798-015-0033-9] [PMID] []
10. Iepsen UW, Plovsing RR, Tjelle K, Foss NB, Meyhoff CS, Ryrso CK, Berg RMG, Secher NH. The role of lactate in sepsis and COVID-19: perspective from contracting skeletal muscle metabolism. Exp Physiol. 2021;107:665-673. [DOI:10.1113/EP089474] [PMID] []
11. Lee S, Choi Y, Jeong E, Park J, Kim J, Tanaka M, Choi J. Physiological significance of elevated levels of lactate by exercise training in the brain and body. J Biosci Bioeng. 2023;135(3):167-175. [DOI:10.1016/j.jbiosc.2022.12.001] [PMID]
12. Coles L, Litt J, Hatta H, Bonen A. Exercise rapidly increases expression of the monocarboxylate transporters MCT1 and MCT4 in rat muscle. J Physiol. 2004;561(1):253-261. [DOI:10.1113/jphysiol.2004.073478] [PMID] []
13. Bickham DC, Bentley DJ, Le Rossignol PF, Cameron-Smith D. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners. Eur J Appl Physiol. 2006;96:636-643. [DOI:10.1007/s00421-005-0100-x] [PMID]
14. Kitaoka Y, Mukai K, Aida H, Hiraga A, Masuda H, Takemasa T, Hatta H. Effects of high-intensity training on lipid metabolism in Thoroughbreds. Am J Vet Res. 2012;73:1813-1818. [DOI:10.2460/ajvr.73.11.1813] [PMID]
15. Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun. 2013;4:2147. [DOI:10.1038/ncomms3147] [PMID]
16. Larsen FJ, Schiffer TA, Ørtenblad N, Zinner C, Morales-Alamo D, Willis SJ, Calbet JA, Holmberg HC, Boushel R. High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. FASEB J. 2016;30(1):417-427. [DOI:10.1096/fj.15-276857] [PMID]
17. Layec G, Blain GM, Rossman MJ, Park SY, Hart CR, Trinity JD, Gifford JR, Sidhu SK, Weavil JC, Hureau TJ, Amann M, Richardson RS. Acute high-intensity exercise impairs skeletal muscle respiratory capacity. Med Sci Sports Exerc. 2018;50(12):2409-2417. [DOI:10.1249/MSS.0000000000001735] [PMID] []
18. Valiulin D, Purge P, Mäestu J, Jürimäe J, Hofmann P. Effect of short-duration high-ıntensity upper-body pre-load component on performance among high-level cyclists. Sports. 2022;10:32. [DOI:10.3390/sports10030032] [PMID] []
19. Matsumoto T, Tomita Y, Irisawa K. Identifying the optimal arm priming exercise intensity to improve maximal leg sprint cycling performance. J Sports Sci Med. 2023;22(1): 58-67. [DOI:10.52082/jssm.2023.58] [PMID] []
20. Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278(4):E571-E579. [DOI:10.1152/ajpendo.2000.278.4.E571] [PMID]
21. Thomas C, Delfour-Peyrethon R, Lambert K, Granata C, Hobbs T, Hanon C, Bishop DJ. The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans. Front Physiol. 2023;14:1073407. [DOI:10.3389/fphys.2023.1073407] [PMID] []
22. Neiva HP, Marques, MC, Barbosa TM, Izquierdo M, Viana JL, Teixeira AM, Marinho DA. Warm-up for sprint swimming: Race-pace or aerobic stimulation? A randomized study. J Strength Cond. 2017;31(9):2423-2431. [DOI:10.1519/JSC.0000000000001701] [PMID]
23. Ben-Zaken S, Eliakim A, Nemet D, Kaufman L, Meckel Y. Genetic characteristics of competitive swimmers: A review. Biol Sport. 2022;39(1):157-170. [DOI:10.5114/biolsport.2022.102868] [PMID] []
24. Droździk M, Lapczuk-Romanska J, Wenzel C, Skalski Ł, Szeląg-Pieniek S, Post M, Syczewska M, Kurzawski M, Oswald S. Protein abundance of drug transporters in human hepatitis C livers. Int J Mol Sci. 2022;23(14):7947. [DOI:10.3390/ijms23147947] [PMID] []
25. George D, Mallery M. SPSS for Windows step by step: A simple guide and reference, 17.0 update. Boston: Pearson Allyn & Bacon Publishers Ltd; 2010.
26. Sasaki S, Futagi Y, Kobayashi M, Ogura J, Iseki K. Functional characterization of 5-oxoproline transport via SLC16A1/MCT1. J Biol Chem. 2015;290(4):2303-2311. [DOI:10.1074/jbc.M114.581892] [PMID] []
27. Zelka MK, Kasıkcı ES, Dogan CS, Kapıcı S, Ulucan K, Konuk M. Heterozygous genotype of monocarboxyl transferase 1 (rs1049434) polymorphism commons in a Turkish athlete cohort. J Neurobehav Sci. 2019;6(2):129-132. [DOI:10.5455/JNBS.1549363522]
28. Bulgay C, Zorba E, Bayraktar I, Kazan HH, Ulucan K, Ergun MA. Association between MCT1 gene polymorphism (rs1049434) with the athletic performance of elite track and field athletes. SPORMETRE J Phys Educ Sport Sci. 2023;21(1):127-134. [DOI:10.33689/spormetre.1198404]
29. Akkoc O, Birlik A, Sercan Dogan C, Kırandı O, Ulucan K. Determination of IL-6, HIF1A, MCT1, PPAR-a polymorphism distribution in Turkish ironman triathlon athletes. J Sports Educ. 2020;4(1):01-07.
30. Subak GE, Sahin OFN, Müniroglu RS. The importance of genetic factors in the success of the athletes. SPORMETRE J Phys Educ Sport Sci. 2017;15(3):109-118.
31. Cupeiro R, Benito PJ, Maffulli N, Calderón FJ, González-Lamuño D. MCT1 genetic polymorphism influence in high intensity circuit training: A pilot study. J Sci Med Sport. 2010;13(5):526-530. [DOI:10.1016/j.jsams.2009.07.004] [PMID]
32. Ben‐Zaken S, Eliakim A, Nemet D, Rabinovich M, Kassem E, Meckel Y. Differences in MCT 1 A 1470 T polymorphism prevalence between runners and swimmers. Scand J Med Sci Sports. 2015;25(3):365-371. [DOI:10.1111/sms.12226] [PMID]
33. Sawczuk M, Banting LK, Cięszczyk P, Maciejewska-Karłowska A, Zarębska A, Leońska-Duniec A, Jastrzebski Z, Bishop DJ, Eynon N. MCT1 A1470T: A novel polymorphism for sprint performance?. J Sci Med Sport. 2015;18(1):114-118. [DOI:10.1016/j.jsams.2013.12.008] [PMID]
34. Kikuchi N, Fuku N, Matsumoto R, Matsumoto S, Murakami H, Miyachi M, Nakazato K. The association between MCT1 T1470A polymorphism and power-oriented athletic performance. Int J Sports Med. 2017;38(01):76-80. [DOI:10.1055/s-0042-117113] [PMID]
35. Saito M, Ginszt M, Massidda M, Cięszczyk P, Okamoto T, Majcher P, Nakazato K, Kikuchi N. Association between MCT1 T1470A polymorphism and climbing status in Polish and Japanese climbers. Biol Sport. 2021;38(2):229-234. [DOI:10.5114/biolsport.2020.98624] [PMID] []
36. Cupeiro R, González-Lamuño D, Amigo T, Peinado, AB, Ruiz JR, Ortega FB, Benito PJ. Influence of the MCT1-T1470A polymorphism (rs1049434) on blood lactate accumulation during different circuit weight trainings in men and women. J Sci Med Sport. 2012;15(6):541-547. [DOI:10.1016/j.jsams.2012.03.009] [PMID]
37. Al-Lami HAA, Khaleel SH, Yonis SD. Study the correlation between alleles of MCT1 gene and enduring performance in handball players. J Hum Sport Exerc. 2020;15(3proc):S958-S965. [DOI:10.14198/jhse.2020.15.Proc3.47]
38. González-Haro C, Soria M, Vicente J, Fanlo AJ, Sinués B, Escanero JF. Variants of the solute carrier SLC16A1 gene (MCT1) associated with metabolic responses during a long-graded test in road cyclists. J Strength Cond. 2015;29(12):3494-3505. [DOI:10.1519/JSC.0000000000000994] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb