Articles In Press / Online First                   Back to the articles list | Back to browse issues page


XML Print


1- College of Wushu, Henan University, Zhengzhou, China.
2- Department of Physical Education, Jeonbuk National University, Jeonju, Korea.
3- Department of Physical Education, Yantai University, Yantai, China.
4- Department of Physical Education, Jeonbuk National University, Jeonju, Korea. , rockwall@jbnu.ac.kr
Abstract:   (220 Views)
Background. Jump landing tasks are frequently employed as a non-specific tool to quantify the capabilities of the lower extremity performance and athletes' injuries.
Objectives. This study aimed to investigate the relationships between jump height (JH) and ground contact time (CT) in countermovement jump (CMJ) and drop jump (DJ) with assessment indicators such as reactive strength index (RSI), eccentric phase rate of force development (ERFD), peak rate of force development (PRFD), average velocity (EV), amortization phase time (AT), peak ground reaction force (PF), concentric phase average force (CAF), and vertical stiffness.
Methods. This study employed a cross-sectional design, with 23 participants completing CMJ and DJ tests. Ground reaction force and center of mass displacement data were captured using a motion system and force platforms. Paired-sample t-tests were used to compare differences between CMJ and DJ in JH, CT, ERFD, RSI, and CAF. Spearman rank correlation analysis was conducted to examine the correlation between vertical stiffness and other variables, while Pearson product-moment correlation was used to identify correlations among other variables.
Results. JH was comparable between CMJ and DJ (p=0.14), whereas significant differences were noted in CT (p<0.001), ERFD (p<0.001), RSI (p<0.001), and CAF (p=0.01). In CMJ, significant positive correlations were identified between JH and RSI, PF, and CAF (RSI: r=0.44, p=0.036; PF: r=0.48, p=0.022; CAF: r=0.55, p=0.007). Moreover, CT exhibited a significant negative correlation with RSI, ERFD, and PRFD (RSI: r=-0.66, p=0.001; ERFD: r=-0.47, p=0.025; PRFD: r=-0.44, p=0.034) and a significant positive correlation with AT (p>0.05). During DJ, JH was significantly positively correlated with CAF and RSI (RSI: r=0.76, p<0.001; CAF: r=0.66, p<0.001), whereas CT was significantly negatively correlated with RSI (r=-0.48, p=0.021). Notably, increasing the drop height altered these relationships.
Conclusion. These findings collectively reveal that CMJ and DJ differ in influencing factors, suggesting that athletes should tailor their training strategies according to the type of jump.
Full-Text [PDF 361 kb]   (70 Downloads)    
 
 
APPLICABLE REMARKS
  • For athletes primarily engaged in countermovement actions at ground level, if the goal is to improve JH, the focus should be more on strength training, followed by SSC capacity.
  • If the priority is enhancing movement speed, SSC capacity should be prioritized first, followed by explosiveness.

Type of Study: Original Article | Subject: Sport Biomechanics and its related branches
Received: 2024/05/28 | Accepted: 2024/08/5

References
1. 1. Djurić D, Pleša J, Van Hooren B, Kozinc Ž, Šarabon N. The relationship between elastography-based muscle properties and vertical jump performance, countermovement utilization ratio, and rate of force development. Eur J Appl Physiol. 2023;123:1789-1800. [doi:10.1007/s00421-023-05191-7] [ [DOI:10.1007/s00421-023-05191-7] [PMID] []
2. Jarvis P, Turner A, Read P, Bishop C. Reactive Strength Index and its Associations with Measures of Physical and Sports Performance: A Systematic Review with Meta-Analysis. Sports Med. 2022;52:301-330. [doi:10.1007/s40279-021-01566-y] [ [DOI:10.1007/s40279-021-01566-y] [PMID]
3. Prieske O, Chaabene H, Puta C, Behm DG, Büsch D, Granacher U. Effects of Drop Height on Jump Performance in Male and Female Elite Adolescent Handball Players. Int J Sport Physiol. 2019;14:674-680. [doi:10.1123/ijspp.2018-0482] [ [DOI:10.1123/ijspp.2018-0482] [PMID]
4. Harato K, Morishige Y, Kobayashi S, Niki Y, Nagura T. Biomechanical features of drop vertical jump are different among various sporting activities. BMC Musculoskelet Disord. 2022;23:331. [doi:10.1186/s12891-022-05290-0] [ [DOI:10.1186/s12891-022-05290-0] [PMID] []
5. Malaver JR, Cubides JR, Argothy R, Cohen DD. Risk Factors Associated With Medial Tibial Stress Syndrome In Military Cadets During Basic Training. Med Sci Sports Exercise. 2019;51:268-268. [doi:10.1249/01.mss.0000561309.34972.93] [DOI:10.1249/01.mss.0000561309.34972.93]
6. Read PJ, Oliver JL, De Ste Croix MBA, Myer GD, Lloyd RS. A prospective investigation to evaluate risk factors for lower extremity injury risk in male youth soccer players. Scand J Med Sci Spor. 2018;28:1244-1251. [doi:10.1111/sms.13013] [ [DOI:10.1111/sms.13013] [PMID] []
7. Barker LA, Harry JR, Mercer JA. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. J Strength Cond Res. 2018;32:248-254. [doi:10.1519/JSC.0000000000002160] [ [DOI:10.1519/JSC.0000000000002160] [PMID]
8. Ziv G, Lidor R. Vertical jump in female and male basketball players-A review of observational and experimental studies. J Sci Med Sport. 2010;13:332-339. [doi:10.1016/j.jsams.2009.02.009] [ [DOI:10.1016/j.jsams.2009.02.009] [PMID]
9. Ziv G, Lidor R. Vertical jump in female and male volleyball players: a review of observational and experimental studies: Vertical jump in volleyball players. Scand J Med Sci Spor. 2010;20:556-567. [doi:10.1111/j.1600-0838.2009.01083.x] [ [DOI:10.1111/j.1600-0838.2009.01083.x] [PMID]
10. Ericksen HM, Gribble PA, Pfile KR, Pietrosimone BG. Different Modes of Feedback and Peak Vertical Ground Reaction Force During Jump Landing: A Systematic Review. J Athl Training. 2013;48:685-695. [doi:10.4085/1062-6050-48.3.02] [ [DOI:10.4085/1062-6050-48.3.02] [PMID] []
11. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116:1091-1116. [doi:10.1007/s00421-016-3346-6] [ [DOI:10.1007/s00421-016-3346-6] [PMID] []
12. Pearson SJ, McMahon J. Lower limb mechanical properties: determining factors and implications for performance. Sports Med. 2012;42(11):929-40. [doi:10.1007/BF03262304] [ [DOI:10.1007/BF03262304] [PMID]
13. Ishikawa M, Komi PV. Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol. 2004;96:848-852. [doi:10.1152/japplphysiol.00948.2003] [ [DOI:10.1152/japplphysiol.00948.2003] [PMID]
14. Cadens Roca M, Planas-Anzano A, Peirau-Terés X, Bishop C, Romero-Rodríguez D, Madruga-Parera M. Relationship between Asymmetry Profiles and Jump Performance in Youth Female Handball Players. J Hum Kinet [Internet]. 2023 [cited 2023 Oct 5]. [doi:10.5114/jhk/163432] [ [DOI:10.5114/jhk/163432] [PMID] []
15. Myburgh GK, Pfeifer CE, Hecht CJ. Warm-ups for Youth Athletes: Making the First 15-Minutes Count. Strength Cond J. 2020;42:45-53. [doi:10.1519/SSC.0000000000000549] [DOI:10.1519/SSC.0000000000000549]
16. Bishop D. Warm Up II: Performance Changes Following Active Warm Up and How to Structure the Warm Up. Sports Med. 2003;33:483-498. [doi:10.2165/00007256-200333070-00002] [ [DOI:10.2165/00007256-200333070-00002] [PMID]
17. Di Giminiani R, Giovannelli A, Capuano L, Izzicupo P, Di Blasio A, Masedu F. Neuromuscular Strategies in Stretch-Shortening Exercises with Increasing Drop Heights: The Role of Muscle Coactivation in Leg Stiffness and Power Propulsion. IJERPH. 2020;17:8647. [doi:10.3390/ijerph17228647] [ [DOI:10.3390/ijerph17228647] [PMID] []
18. Mackala K, Stodółka J, Siemienski A, Ćoh M. Biomechanical Analysis of Squat Jump and Countermovement Jump From Varying Starting Positions. J Strength Cond Res. 2013;27:2650-2661. [doi:10.1519/JSC.0b013e31828909ec] [ [DOI:10.1519/JSC.0b013e31828909ec] [PMID]
19. Gillen ZM, Shoemaker ME, McKay BD, Bohannon NA, Gibson SM, Cramer JT. Influences of the Stretch-Shortening Cycle and Arm Swing on Vertical Jump Performance in Children and Adolescents. J Strength Cond Res. 2022;36:1245-1256. [doi:10.1519/JSC.0000000000003647] [ [DOI:10.1519/JSC.0000000000003647] [PMID]
20. Read PJ, Oliver JL, Myer GD, De Ste Croix MBA, Lloyd RS. The Effects of Maturation on Measures of Asymmetry During Neuromuscular Control Tests in Elite Male Youth Soccer Players. Pediatr Exerc Sci. 2018;30:168-175. [doi:10.1123/pes.2017-0081] [ [DOI:10.1123/pes.2017-0081] [PMID] []
21. Li M, Meng X, Guan L, Kim Y, Kim S. Comparing the effects of static stretching alone and in combination with post-activation performance enhancement on squat jump performance at different knee starting angles. J Sport Sci Med. 2023;22:769. [doi:10.52082/jssm.2023.769] [ [DOI:10.52082/jssm.2023.769] [PMID] []
22. Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises: Medicine & Science in Sports & Exercise. 1998;30:556-569. [doi:10.1097/00005768-199804000-00014] [ [DOI:10.1097/00005768-199804000-00014] [PMID]
23. Janicijevic DN, Knezevic OM, Mirkov DM, Pérez-Castilla A, Petrovic MR, García-Ramos A. Magnitude and reliability of mechanical outputs obtained during loaded squat jumps performed from different knee angles. Sports Biomechanics. 2021;20:925-937. [doi:10.1080/14763141.2019.1618390] [ [DOI:10.1080/14763141.2019.1618390] [PMID]
24. Barker LA, Harry JR, Mercer JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. Journal of Strength and Conditioning Research. 2018;32:248-254. [doi:10.1519/JSC.0000000000002160] [ [DOI:10.1519/JSC.0000000000002160] [PMID]
25. Fritz CO, Morris PE, Richler JJ. Effect size estimates: Current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141:2-18. [doi:10.1037/a0026092] [ [DOI:10.1037/a0026092] [PMID]
26. Young WB, Pryor JF, Wilson GJ. Effect of Instructions on characteristics of Countermovement and Drop Jump Performance. The Journal of Strength & Conditioning Research. 1995;9:232. [doi:10.1519/00124278-199511000-00005] [DOI:10.1519/00124278-199511000-00005]
27. Cormie P, McBride JM, McCaulley GO. Power-Time, Force-Time, and Velocity-Time Curve Analysis of the Countermovement Jump: Impact of Training. J Strength Cond Res. 2009;23:177-186. [doi:10.1519/JSC.0b013e3181889324] [ [DOI:10.1519/JSC.0b013e3181889324] [PMID]
28. McLellan CP, Lovell DI, Gass GC. The Role of Rate of Force Development on Vertical Jump Performance. J Strength Cond Res. 2011;25:379-385. [doi:10.1519/JSC.0b013e3181be305c] [ [DOI:10.1519/JSC.0b013e3181be305c] [PMID]
29. Taube W, Leukel C, Lauber B, Gollhofer A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch‐shortening cycle training. Scand J Med Sci Spor. 2012;22:671-683. [doi:10.1111/j.1600-0838.2011.01293.x] [ [DOI:10.1111/j.1600-0838.2011.01293.x] [PMID]
30. Pion J, Segers V, Fransen J, Debuyck G, Deprez D, Haerens L, Vaeyens R, Philippaerts R, Lenoir M. Generic anthropometric and performance characteristics among elite adolescent boys in nine different sports. European Journal of Sport Science. 2015;15:357-366. [doi:10.1080/17461391.2014.944875] [ [DOI:10.1080/17461391.2014.944875] [PMID]
31. Healy R, Kenny IC, Harrison AJ. Reactive Strength Index: A Poor Indicator of Reactive Strength? Int J Sport Physiol. 2018;13:802-809. [doi:10.1123/ijspp.2017-0511] [ [DOI:10.1123/ijspp.2017-0511] [PMID]
32. Ruddock AD, Winter EM. Jumping depends on impulse not power. J Sport Sci. 2016;34:584-585. [doi:10.1080/02640414.2015.1064157] [ [DOI:10.1080/02640414.2015.1064157] [PMID]
33. Laffaye G, Wagner P. Eccentric rate of force development determines jumping performance. Comput Method Biomec. 2013;16:82-83. [doi:10.1080/10255842.2013.815839] [ [DOI:10.1080/10255842.2013.815839] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb