year 8, Issue 2 (Summer 2020)                   Ann Appl Sport Sci 2020, 8(2): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi Saghand M, Rajabi H, Dehkhoda M, Hosseini A. The Effects of Eight Weeks High-Intensity Interval Training vs. Continuous Moderate-Intensity Training on Plasma Dickkopf-1 and Glycemic Control in Patients with Type 2 Diabetes. Ann Appl Sport Sci 2020; 8 (2)
URL: http://aassjournal.com/article-1-741-en.html
1- Department of Exercise Physiology, Faculty of Sport Sciences, Kharazmi University, Tehran, Iran , maryam.1907@gmail.com
2- Department of Exercise Physiology, Faculty of Sport Sciences, Kharazmi University, Tehran, Iran
Abstract:   (4414 Views)
Background. Dickkopf-1 (DKK-1) is the most important regulator of the Wingless signaling pathway (Wnt), which plays an important role in inflammation, atherogenesis, and glucose metabolism. Dkk-1 proteins increase with the activation of platelets, and increase of platelet activity plays a role in the progression of progressive atherogenesis in patients with type 2 diabetes.
Objectives. The aim of this study was the effects of eight weeks high-intensity interval training vs. Continuous moderate-intensity training on plasma dickkopf-1 and glycemic control in patients with type 2 diabetes.
Methods. A total of 57 patients with type 2 diabetes mellitus were randomly assigned to the control (CTR), continuous moderate-intensity training (CMIT), and high-intensity interval training (HIIT) groups. Biochemical parameters were measured in all the subjects 48 hours before starting the training program as well as 48 hours after the last session of the training. Both training programs were performed based on specific protocols using a cycle ergometer.
Results. Both training models could increase VO2peak and decrease glycosylated hemoglobin, insulin resistance, and hypertension in post-test compared to pre-test (p<0.05). The plasma levels of Dkk-1 in the post-test of CMIT and HIIT groups decreased significantly compared to the pre-test values (p<0.05).
Conclusion. The HIIT and CMIT could decrease blood glucose and insulin resistance and reduce plasma Dkk-1 levels via reducing platelet dysfunction and improving diabetes-related indices.
Full-Text [PDF 596 kb]   (1186 Downloads)    
 
 
APPLICABLE REMARKS
Regarding the obtained results, HIIT can be used as a non-pharmacological treatment for glycemic control (glucose, insulin, and insulin resistance) and reduction of Dkk-1 (as an atherosclerotic index) in patients with type 2 diabetes.

Type of Study: Original Article | Subject: Sport Physiology and its related branches
Received: 2019/05/6 | Accepted: 2019/07/1

References
1. American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36 Suppl 1:S67-74. [DOI:10.2337/dc13-S067] [PMID] [PMCID]
2. Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes--part I: pathways of vascular disease in diabetes. Vascul Pharmacol. 2011;54(3-6):68-74. [DOI:10.1016/j.vph.2011.03.005] [PMID]
3. Santilli F, Simeone P, Liani R, Davi G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015;120:28-39. [DOI:10.1016/j.prostaglandins.2015.05.002] [PMID]
4. Lattanzio S, Santilli F, Liani R, Vazzana N, Ueland T, Di Fulvio P, et al. Circulating dickkopf-1 in diabetes mellitus: association with platelet activation and effects of improved metabolic control and low-dose aspirin. J Am Heart Assoc. 2014;3(4). [DOI:10.1161/JAHA.114.001000]
5. Gaudio A, Privitera F, Pulvirenti I, Canzonieri E, Rapisarda R, Fiore CE. The relationship between inhibitors of the Wnt signalling pathway (sclerostin and Dickkopf-1) and carotid intima-media thickness in postmenopausal women with type 2 diabetes mellitus. Diab Vasc Dis Res. 2014;11(1):48-52. [DOI:10.1177/1479164113510923] [PMID]
6. Ghardashi Afousi A, Izadi MR, Rakhshan K, Mafi F, Biglari S, Gandomkar Bagheri H. Improved brachial artery shear patterns and increased flow-mediated dilatation after low-volume high-intensity interval training in type 2 diabetes. Exp Physiol. 2018;103(9):1264-76. [DOI:10.1113/EP087005] [PMID]
7. Joyner MJ, Green DJ. Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol. 2009;587(Pt 23):5551-8. [DOI:10.1113/jphysiol.2009.179432] [PMID] [PMCID]
8. Byrkjeland R, Stensaeth KH, Anderssen S, Njerve IU, Arnesen H, Seljeflot I, et al. Effects of exercise training on carotid intima-media thickness in patients with type 2 diabetes and coronary artery disease. Influence of carotid plaques. Cardiovasc Diabetol. 2016;15:13. [DOI:10.1186/s12933-016-0336-2] [PMID] [PMCID]
9. Kerschan-Schindl K, Thalmann MM, Weiss E, Tsironi M, Foger-Samwald U, Meinhart J, et al. Changes in Serum Levels of Myokines and Wnt-Antagonists after an Ultramarathon Race. PLoS One. 2015;10(7):e0132478. [DOI:10.1371/journal.pone.0132478] [PMID] [PMCID]
10. Kim TH, Chang JS, Park KS, Park J, Kim N, Lee JI, et al. Effects of exercise training on circulating levels of Dickkpof-1 and secreted frizzled-related protein-1 in breast cancer survivors: A pilot single-blind randomized controlled trial. PLoS One. 2017;12(2):e0171771. [DOI:10.1371/journal.pone.0171771] [PMID] [PMCID]
11. Bayod S, Mennella I, Sanchez-Roige S, Lalanza JF, Escorihuela RM, Camins A, et al. Wnt pathway regulation by long-term moderate exercise in rat hippocampus. Brain Res. 2014;1543:38-48. [DOI:10.1016/j.brainres.2013.10.048] [PMID]
12. Izadi MR, Ghardashi Afousi A, Asvadi Fard M, Babaee Bigi MA. High-intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals. J Physiol Biochem. 2018;74(1):47-55. [DOI:10.1007/s13105-017-0602-0] [PMID]
13. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014;24(2):e69-76. [DOI:10.1111/sms.12112] [PMID]
14. da Silva CA, Ribeiro JP, Canto JC, da Silva RE, Silva Junior GB, Botura E, et al. High-intensity aerobic training improves endothelium-dependent vasodilation in patients with metabolic syndrome and type 2 diabetes mellitus. Diabetes Res Clin Pract. 2012;95(2):237-45. [DOI:10.1016/j.diabres.2011.09.034] [PMID]
15. Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42(7):587-605. [DOI:10.2165/11631910-000000000-00000] [PMID]
16. Kohei K. Pathophysiology of type 2 diabetes and its treatment policy. JMAJ. 2010;53(1):41-6.
17. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239-51. [DOI:10.1016/S0140-6736(17)30058-2]
18. Frosig C, Richter EA. Improved insulin sensitivity after exercise: focus on insulin signaling. Obesity (Silver Spring). 2009;17 Suppl 3:S15-20. [DOI:10.1038/oby.2009.383] [PMID]
19. Goodwin ML. Blood glucose regulation during prolonged, submaximal, continuous exercise: a guide for clinicians. J Diabetes Sci Technol. 2010;4(3):694-705. [DOI:10.1177/193229681000400325] [PMID] [PMCID]
20. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235-61. [DOI:10.1146/annurev.med.49.1.235] [PMID]
21. Praet SF, van Loon LJ. Optimizing the therapeutic benefits of exercise in Type 2 diabetes. J Appl Physiol (1985). 2007;103(4):1113-20. [DOI:10.1152/japplphysiol.00566.2007] [PMID]
22. Riahi S, Riyahi F, Yaribeygi H. Diabetes and Role of Exercise on its Control; A systematic Review. Health Res J. 2016;1(2):113-21. [DOI:10.20286/hrj-010204]
23. Solhpour A, Jafari A, Hashemi M, Hosseini B, Razavi S, Mohseni G, et al. A comparison of prophylactic use of meperidine, meperidine plus dexamethasone, and ketamine plus midazolam for preventing of shivering during spinal anesthesia: a randomized, double-blind, placebo-controlled study. J Clin Anesth. 2016;34:128-35. [DOI:10.1016/j.jclinane.2016.03.036] [PMID]
24. Rao TP, Kuhl M. An updated overview on Wnt signaling pathways: a prelude for more. Circ Res. 2010;106(12):1798-806. [DOI:10.1161/CIRCRESAHA.110.219840] [PMID]
25. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2002;417(6889):664-7. [DOI:10.1038/nature756] [PMID]
26. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M. Proteomics characterization of extracellular space components in the human aorta. Mol Cell Proteomics. 2010;9(9):2048-62. [DOI:10.1074/mcp.M110.001693] [PMID] [PMCID]
27. Register TC, Hruska KA, Divers J, Bowden DW, Palmer ND, Carr JJ, et al. Plasma Dickkopf1 (DKK1) concentrations negatively associate with atherosclerotic calcified plaque in African-Americans with type 2 diabetes. J Clin Endocrinol Metab. 2013;98(1):E60-5. [DOI:10.1210/jc.2012-3038] [PMID] [PMCID]
28. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357(24):2482-94. [DOI:10.1056/NEJMra071014] [PMID]
29. Vazzana N, Ranalli P, Cuccurullo C, Davi G. Diabetes mellitus and thrombosis. Thromb Res. 2012;129(3):371-7. [DOI:10.1016/j.thromres.2011.11.052] [PMID]
30. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086-94. [DOI:10.1161/CIRCULATIONAHA.106.675041] [PMID]
31. Li M, Liu X, Zhang Y, Di M, Wang H, Wang L, et al. Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis. J Mol Med (Berl). 2016;94(4):431-41. [DOI:10.1007/s00109-015-1369-9] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb