year 9, Issue 2 (Summer 2021)                   Ann Appl Sport Sci 2021, 9(2): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kramer M, Thomas E J, Van Aswegen M. Functional Speed Reserve as a Proxy for the Anaerobic Speed Reserve Using the Critical Speed Concept. Ann Appl Sport Sci. 2021; 9 (2)
URL: http://aassjournal.com/article-1-928-en.html
1- Physical Activity, Sport, and Recreation (PhASRec) Unit, North West University, Potchefstroom, South Africa , mark.kramer@nwu.ac.za
2- Human Movement Science Department, Nelson Mandela University, Port Elizabeth, South Africa
3- Physical Activity, Sport, and Recreation (PhASRec) Unit, North West University, Potchefstroom, South Africa
Abstract:   (719 Views)
Background: Although maximal sprint speed (MSS) and the anaerobic speed reserve (ASR) provides valuable information about the speed profile of athletes, these parameters fall short of providing important information about sub-maximal metabolic thresholds. The only field test that can offer an estimate of a sub-maximal metabolic threshold is the 3-minute all-out test for running (3MT) which delivers three parameters of interest: the critical speed (CS), fatiguability constant (D’), and 3MT-specific maximal running speed (MS3MT).
Objectives: We offer an alternative to the ASR, termed the ‘functional’ speed reserve (FSR), and therefore the purpose of this study was two-fold: firstly to compare MSS to MS3MT and FSR to ASR, and secondly, to determine the correlations between ASR, FSR, and D’.
Methods: Thirty-two participants volunteered for the study (age: 22.50 ± 4.32 years; height: 1.67 ± 0.78 m; body mass: 66.58 ± 11.30 kg) and completed a graded exercise test (GXT), 3MT, and 40-m sprint test following familiarisation bouts for each test.
Results: MSS and MS3MT were strongly correlated (r=0.93, p<0.001). The ASR and FSR were also strongly correlated (r=0.77, p<0.05), with the FSR also showing a strong correlation with D’ (r=0.77, p<0.05).
Conclusion: The 3MT provides a viable, arguably more ecological alternative to the ASR (i.e. FSR), and provides additional parameters such as CS, D’, and MS3MT. Field testing based on the 3MT can offer coaches and athletes unique performance insights and tools to effectively program and prescribe training interventions.
Full-Text [PDF 338 kb]   (159 Downloads)    
 
 
APPLICABLE REMARKS
  • Parameters from the 3MT provide viable surrogates for MSS and ASR but more importantly, also provide valuable information regarding the critical metabolic threshold and fatigability constant in a much more time-efficient manner (i.e. a relatively straightforward 3-minute test).

Type of Study: Original Article | Subject: Sport Physiology and its related branches
Received: 2020/09/8 | Accepted: 2020/11/4 | Published: 2021/07/19 | ePublished: 2021/07/19

References
1. Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An Examination and Critique of Current Methods to Determine Exercise Intensity. Sports Med. 2020;50(10):1729-1756. [DOI:10.1007/s40279-020-01322-8] [PMID]
2. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313-338. [DOI:10.1007/s40279-013-0029-x] [PMID]
3. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927-954. [DOI:10.1007/s40279-013-0066-5] [PMID]
4. Buchheit M, Mendez-Villanueva A, Simpson BM, Bourdon PC. Match running performance and fitness in youth soccer. Int J Sports Med. 2010;31(11):818-825. [DOI:10.1055/s-0030-1262838] [PMID]
5. Lacome M, Piscione J, Hager JP, Bourdin M. A new approach to quantifying physical demand in rugby :union:. J Sports Sci. 2014;32(3):290-300. [DOI:10.1080/02640414.2013.823225] [PMID]
6. Koral J, Oranchuk DJ, Herrera R, Millet GY. Six Sessions of Sprint Interval Training Improves Running Performance in Trained Athletes. J Strength Cond Res. 2018;32(3):617-623. [DOI:10.1519/JSC.0000000000002286] [PMID] [PMCID]
7. Sparks M, Coetzee B, Gabbett TJ. Yo-Yo intermittent recovery test thresholds to determine positional internal match loads of semi-professional soccer players. Int J Perform Anal Sport. 2016;16(3):1065-1075. [DOI:10.1080/24748668.2016.11868948]
8. Turner A, Walker S, Stembridge M, Coneyworth P, Reed G, Birdsey L. A testing battery for the assessment of fitness in soccer players. Strength Cond J. 2011;33(5):29-39. [DOI:10.1519/SSC.0b013e31822fc80a]
9. Kramer M, Thomas EJ, Pettitt RW. Critical speed and finite distance capacity: norms for athletic and non-athletic groups. Eur J Appl Physiol. 2020;120(4):861-872. [DOI:10.1007/s00421-020-04325-5] [PMID]
10. Kramer M, Watson M, Du Randt R, Pettitt RW. Critical Speed as a Measure of Aerobic Fitness for Male Rugby :union: Players. Int J Sports Physiol Perform. 2019;14(4):518-524. [DOI:10.1123/ijspp.2018-0411] [PMID]
11. Thomas EJ, Pettitt RW, Kramer M. High-Intensity Interval Training Prescribed Within the Secondary Severe-Intensity Domain Improves Critical Speed But Not Finite Distance Capacity. J Sci Sport Exerc [Internet]. 2020;2:154-166. [DOI:10.1007/s42978-020-00053-6]
12. Pettitt RW, Jamnick N, Clark IE. 3-min all-out exercise test for running. Int J Sports Med. 2012;33(6):426-431. [DOI:10.1055/s-0031-1299749] [PMID]
13. Kramer M, Du Randt R, Watson M, Pettitt RW. Bi-exponential modeling derives novel parameters for the critical speed concept. Physiol Rep. 2019;7(4):e13993. [DOI:10.14814/phy2.13993] [PMID] [PMCID]
14. Courtright SP, Williams JL, Clark IE, Pettitt RW, Dicks ND. Monitoring interval-training responses for swimming using the 3-min all-out exercise test. Int J Exerc Sci [Internet]. 2016;9(5):545-553.
15. Solomonson AA, Dicks ND, Kerr WJ, Pettitt RW. Influence of Load Carriage on High-Intensity Running Performance Estimation. J Strength Cond Res. 2016;30(5):1391-1396. [DOI:10.1519/JSC.0000000000001209] [PMID]
16. Clark IE, West BM, Reynolds SK, Murray SR, Pettitt RW. Applying the critical velocity model for an off-season interval training program. J Strength Cond Res. 2013;27(12):3335-3341. d [DOI:10.1519/JSC.0b013e31828f9d87] [PMID]
17. Sandford GN, Kilding AE, Ross A, Laursen PB. Maximal Sprint Speed and the Anaerobic Speed Reserve Domain: The Untapped Tools that Differentiate the World's Best Male 800 m Runners. Sports Med. 2019;49(6):843-852. [DOI:10.1007/s40279-018-1010-5] [PMID]
18. Buchheit M, Simpson BM, Hader K, Lacome M. Occurrences of near-to-maximal speed running bouts in elite soccer: insights for training prescription and injury mitigation. Sci Med Footb. 2018;3(2):1-10. [DOI:10.1080/24733938.2020.1802058]
19. Spencer M, Lawrence S, Rechichi C, Bishop D, Dawson B, Goodman C. Time-motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sci. 2004;22(9):843-850. [DOI:10.1080/02640410410001716715] [PMID]
20. Vescovi JD. Impact of maximum speed on sprint performance during high-level youth female field hockey matches: female athletes in motion (FAiM) study. Int J Sports Physiol Perform. 2014;9(4):621-626. [DOI:10.1123/ijspp.2013-0263] [PMID]
21. Dubois R, Paillard T, Lyons M, Mcgrath D, Maurelli O, Prioux J. Running and Metabolic Demands of Elite Rugby :union: Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods. 2017:84-92.
22. Strom CJ, Pettitt RW, Krynski LM, Jamnick NA, Hein CJ, Pettitt CD. Validity of a customized submaximal treadmill protocol for determining VO2max. Eur J Appl Physiol. 2018;118(9):1781-1787. [DOI:10.1007/s00421-018-3908-x] [PMID]
23. Jones AM, Doust JH. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321-327. https://doi.org/10.1080/026404196367796 [DOI:10.1080/02640419608727717]
24. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol [Internet]. 2001;37(1):153-156. [DOI:10.1016/S0735-1097(00)01054-8]
25. Vehrs PR, George JD, Gilbert W, Plowman SA. Measurement in Physical Education and Exercise Science Submaximal Treadmill Exercise Test to Predict VO2max in Fit Adults. Meas Phys Educ Exerc Sci. 2007;11(2):61-72. [DOI:10.1080/10913670701294047]
26. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3-13. [DOI:10.1249/MSS.0b013e31818cb278] [PMID]
27. Weyand PG, Lin JE, Bundle MW. Sprint performance-duration relationships are set by the fractional duration of external force application. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R758-765. [DOI:10.1152/ajpregu.00562.2005] [PMID]
28. Bundle MW, Hoyt RW, Weyand PG. High-speed running performance: a new approach to assessment and prediction. J Appl Physiol (1985). 2003;95(5):1955-1962. [DOI:10.1152/japplphysiol.00921.2002] [PMID]
29. Fiorenza M, Gunnarsson TP, Hostrup M, Iaia FM, Schena F, Pilegaard H, et al. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol. 2018;596(14):2823-2840. [DOI:10.1113/JP275972] [PMID] [PMCID]
30. de Aguiar RA, Salvador AF, Penteado R, Faraco HC, Pettitt RW, Caputo F. Reliability and validity of the 3-min all-out running test. Rev Bras Ciências do Esporte [Internet]. 2018;40(3):288-294. [DOI:10.1016/j.rbce.2018.02.003]
31. Jones AM, Vanhatalo A. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Med. 2017;47(Suppl 1):65-78. [DOI:10.1007/s40279-017-0688-0] [PMID] [PMCID]
32. Muniz-Pumares D, Karsten B, Triska C, Glaister M. Methodological Approaches and Related Challenges Associated With the Determination of Critical Power and Curvature Constant. J Strength Cond Res. 2019;33(2):584-596. [DOI:10.1519/JSC.0000000000002977] [PMID]
33. Vanhatalo A, Jones AM. Influence of creatine supplementation on the parameters of the "all-out critical power test.". J Exerc Sci Fit. 2009;7(1):9-17. [DOI:10.1016/S1728-869X(09)60002-2]
34. Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA. Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol (1985). 2010;108(4):866-874. [DOI:10.1152/japplphysiol.91425.2008] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb