year 12, Issue 3 (Autumn 2024)                   Ann Appl Sport Sci 2024, 12(3): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rawdon C L, Ingalls C P, Yang F, Otis J S, Brandenberger K, Jackson M. Comparison of the Dynamometer- and Kinematics-based Analyses for Measuring Individual Quadriceps Muscle Torque: A Pilot Study. Ann Appl Sport Sci 2024; 12 (3)
URL: http://aassjournal.com/article-1-1399-en.html
1- Department of Exercise Science, Kinesiology Faculty, Mercer University: 1501 Mercer University Drive Macon, GA, US, 31207 , rawdon_cl@mercer.edu
2- Department of Kinesiology and Health, Exercise Science, Georgia State University: 125 Decatur Street Atlanta, GA, US, 30303
3- Department of Respiratory Therapy, Georgia State University: P.O. Box 4019 Atlanta, GA, US, 30303
Abstract:   (659 Views)
Background. Current studies on exercise-induced injury effects lack direct force measurements of individual agonist muscles post-injury, relying on indirect markers. Transcutaneous muscle stimulation assesses the intrinsic force-producing capacity of the entire muscle group but has not been used to compare individual muscle strength.
Objectives. Compare the reliability of dynamometer-based and kinematic-based methods in measuring the torque produced by electrical stimulation of individual quadriceps muscles.
Methods. Eight males (30.3±3.9 years) were enrolled for a two-day test-retest study. On Day 1, peak isometric torque during maximal voluntary contractions (MVC) was assessed, followed by peak isometric tetanic torque produced by electrical stimulation (20 & 80 Hz) of the vastus medialis, rectus femoris, and vastus lateralis muscles using the Biodex dynamometer with the knee at 90° and the shin pad 2 cm above the lateral malleolus. Subjects performed two MVCs for four seconds each. Isometric torque during 20 and 80 Hz stimulations of the individual quadriceps muscles was then recorded by the dynamometer. The kinematics of the weighted leg during 20 and 80 Hz electrical stimulation-induced concentric contractions targeting the individual muscles were collected by a motion capture system (Vicon) to calculate peak torque. Procedures were repeated within seven days. Test-retest reliability was analyzed using intraclass correlation coefficients (ICC) and Bland-Altman plots.
Results. Both methods showed strong test-retest reliability (Biodex ICC=0.95 [95% CI: 0.90-0.97]; Vicon ICC=0.98 [95% CI: 0.96-0.98]). The reliability of both methods was further supported by the Bland-Altman plot.
Conclusion. Dynamometer- and kinematics-based analyses were reliable for measuring individual quadricep muscle torque produced by transcutaneous electrical stimulation.
Full-Text [PDF 1118 kb]   (287 Downloads)    
 
 
APPLICABLE REMARKS
• The study confirms that the Biodex dynamometer and Vicon motion capture system are reliable tools for assessing individual quadriceps muscle strength in sedentary males.
• The Biodex shows consistent reliability across frequencies, and the Vicon excels at higher frequencies.
• These methods should be further developed and standardized for longitudinal tracking and targeted rehabilitation programs, particularly for addressing muscle-specific strength deficits and imbalances that can occur from fatigue and injury.
• This reliability supports their broader application in various populations and clinical settings.

Type of Study: Original Article | Subject: Sport Physiology and its related branches
Received: 2024/04/22 | Accepted: 2024/06/25

References
1. 1. Warren G, Ingalls C, Lowe D, Armstrong R. Excitation-contraction uncoupling: major role in contraction-induced muscle injury. Exerc Sport Sci Rev. 2001;29:82-87. https://doi.org/10.1097/00003677-200104000-00008 [DOI:10.1249/00003677-200104000-00008] [PMID]
2. Warren G, Ingalls C, Lowe D, Armstrong R. What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury? J Orthop Sports Phys Ther. 2002;32:58-64. [DOI:10.2519/jospt.2002.32.2.58] [PMID]
3. Prior B, Jayaraman R, Reid R, Cooper T, Foley J, Dudley G, Meyer R. Biarticular and monoarticular muscle activation and injury in human quadriceps muscle. Eur J Appl Physiol. 2001;85:185-190. [DOI:10.1007/s004210100434] [PMID]
4. Black C, McCully K. Muscle injury after repeated bouts of voluntary and electrically stimulated exercise. Med Sci Sports Exerc. 2008;40:1605. [DOI:10.1249/MSS.0b013e3181788dbe] [PMID] []
5. Maeo S, Saito A, Otsuka S, Shan X, Kanehisa H, Kawakami Y. Localization of muscle damage within the quadriceps femoris induced by different types of eccentric exercises. Scand J Med Sci Sports. 2018;28:95-106. [DOI:10.1111/sms.12880] [PMID]
6. Beato M, Madruga-Parera M, Piqueras-Sanchiz F, Moreno-Pérez V, Romero-Rodriguez D. Acute Effect of Eccentric Overload Exercises on Change of Direction Performance and Lower-Limb Muscle Contractile Function. J Strength Cond Res. 2021;35:3327-3333. [DOI:10.1519/JSC.0000000000003359] [PMID]
7. Hultman E, Sjöholm H, Jäderholm-Ek I, Krynicki J. Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflügers Archiv. 1983 Jul;398:139-41. [DOI:10.1007/BF00581062] [PMID]
8. Newham D, Mills K, Quigley B, Edwards R. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci. 1983;64:55-62. [DOI:10.1042/cs0640055] [PMID]
9. Brown S, Child R, Donnelly A, Saxton J, Day S. Changes in human skeletal muscle contractile function following stimulated eccentric exercise. Eur J Appl Physiol Occup Physiol. 1996;72:515-521. [DOI:10.1007/BF00242284] [PMID]
10. Mackey A, Rasmussen L, Kadi F, Schjerling P, Helmark I, Ponsot E, Agaard P, Durigan J, Kjaer M. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J. 2016;30:2266-2281. [DOI:10.1096/fj.201500198R] [PMID] []
11. Kamandulis S, de Souza Leite F, Hernández A, Katz A, Brazaitis M, Bruton J.D, Venckunas T, Masiulis N, Mickeviciene D, Eimantas N, Subocius A. Prolonged force depression after mechanically demanding contractions is largely independent of Ca2+ and reactive oxygen species. FASEB J. 2017;31:4809-4820. [DOI:10.1096/fj.201700019R] [PMID]
12. Kamandulis S, Muanjai P, Skurvydas A, Brazaitis M, Sniečkus A, Venckūnas T, Streckis V, Mickeviciene D, Jones DA. The contribution of low‐frequency fatigue to the loss of quadriceps contractile function following repeated drop jumps. Experimental physiology. 2019;104:1701-10. [DOI:10.1113/EP087914] [PMID]
13. Botter A, Oprandi G, Lanfranco F, Allasia S, Maffiuletti NA, Minetto MA. Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. Eur J Appl Physiol. 2011;111:2461-2471. [DOI:10.1007/s00421-011-2093-y] [PMID]
14. Vieira TM, Potenza P, Gastaldi L, & Botter A. Electrode position markedly affects knee torque in tetanic, stimulated contractions. Eur J Appl Physiol. 2016;116:335-342. [DOI:10.1007/s00421-015-3289-3] [PMID]
15. Visscher RM, Rossi D, Friesenbichler B, Dohm‐Acker M, Rosenheck T, Maffiuletti NA. Vastus medialis and lateralis activity during voluntary and stimulated contractions. Muscle & Nerve. 2017;56:968-74. [DOI:10.1002/mus.25542] [PMID]
16. Behm DG, Colwell EM, Power GMJ, et al. Transcutaneous electrical nerve stimulation improves fatigue performance of the treated and contralateral knee extensors. Eur J Appl Physiol. 2019;119:2745-2755. [DOI:10.1007/s00421-019-04253-z] [PMID]
17. Miyamoto N, Fukutani A, Yanai T, Kawakami Y. Twitch potentiation after voluntary contraction and neuromuscular electrical stimulation at various frequencies in human quadriceps femoris. Muscle & Nerve. 2012;45(1):110-5. [DOI:10.1002/mus.22259] [PMID]
18. De Leva P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J Biomech. 1996;29(9):1223-1230. [DOI:10.1016/0021-9290(95)00178-6] [PMID]
19. Koo TK, & Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-163. [DOI:10.1016/j.jcm.2016.02.012] [PMID] []
20. Haghayegh S, Kang HA, Khoshnevis S, Smolensky MH, & Diller KR. A comprehensive guideline for Bland-Altman and intra-class correlation calculations to properly compare two methods of measurement and interpret findings. Physiol Meas. 2020;41(5):055012. [DOI:10.1088/1361-6579/ab86d6] [PMID]
21. Tavakol M, & Dennick R. Making sense of Cronbach's alpha. Int J Med Educ. 2011;2:53. [DOI:10.5116/ijme.4dfb.8dfd] [PMID] []
22. Akima H, Foley J, Prior B, Dudley G, Meyer R. Vastus lateralis fatigue alters recruitment of musculus quadriceps femoris in humans. J Appl Physiol. 2002;92:679-684. [DOI:10.1152/japplphysiol.00267.2001] [PMID]
23. Enoka RM, Amiridis IG, Duchateau J. Electrical stimulation of muscle: electrophysiology and rehabilitation. Physiology. 2019;35:40-56. [DOI:10.1152/physiol.00015.2019] [PMID]
24. Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 2000 Nov;23(11):1647-66. https://doi.org/10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.3.CO;2-D [DOI:10.1002/1097-4598(200011)23:113.3.CO;2-D]
25. de Brito Fontana H, Han SW, Sawatsky A, Herzog W. The mechanics of agonistic muscles. Journal of biomechanics. 2018;79:15-20. [DOI:10.1016/j.jbiomech.2018.07.007] [PMID]
26. Han SW, Sawatsky A, de Brito Fontana H, Herzog W. Contribution of individual quadriceps muscles to knee joint mechanics. Journal of Experimental Biology. 2019;222(6). [DOI:10.1242/jeb.188292] [PMID]
27. Pincivero DM, Salfetnikov Y, Campy RM, Coelho AJ. Angle-and gender-specific quadriceps femoris muscle recruitment and knee extensor torque. Journal of biomechanics. 2004;37(11):1689-97. [DOI:10.1016/j.jbiomech.2004.02.005] [PMID]
28. Padasala M, Joksimovic M, Bruno C, Melino D, Manzi V. Muscle injuries in athletes. The relationship between H/Q ratio (hamstring/quadriceps ratio). Ita J Sports Reh Po. 2020;7(1):1478-98.
29. Chiu LZ, Daehlin TE. Three-dimensional modeling of human quadriceps femoris forces. J Biomech. 2021;120:110347. [DOI:10.1016/j.jbiomech.2021.110347] [PMID]
30. Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate?. Clin Orthop Relat Res. 2009;467(4):1074-1082. [DOI:10.1007/s11999-008-0594-8] [PMID] []

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb