year 12, Issue 2 (Summer 2024)                   Ann Appl Sport Sci 2024, 12(2): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Badri Al-mhanna S, Leão C, Wan Ghazali W S, Mohamed M, Batrakoulis A, Abiola Afolabi H, et al . Impact of Exercise on High-Density Lipoprotein Cholesterol in Adults with Overweight and Obesity: A Narrative Review. Ann Appl Sport Sci 2024; 12 (2)
URL: http://aassjournal.com/article-1-1300-en.html
1- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India & Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
2- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), Melgaço, Portugal
3- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia , syaheeda@usm.my
4- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
5- Department of Physical Education and Sport Science, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece
6- Department of General Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
7- Department of Human Physiology, Federal University Dutse, Jigawa State, Dutse, Nigeria
8- Department of Rehabilitation, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
9- Department of Sports Management, Faculty of Sport Sciences, Kirikkale University, Kirikkale, Turkey
10- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Inonu, Turkey
11- School of Health and Caring Sciences, University of West Attica, Athens, Greece
Abstract:   (1175 Views)
Background. Sedentary lifestyles and insufficient physical activity contribute significantly to the rising global epidemic of obesity, fostering an environment where excess calories are stored as adipose tissue. Lack of regular physical activity and diminished cardiorespiratory fitness are key factors in the emergence of obesity-related illnesses, leading to cardiovascular and metabolic complications. However, the extent to which low levels of physical activity and obesity directly cause low HDL-C levels is uncertain, and the specific impact of obesity on reducing HDL-C as well as the associated risks are not well clarified. The influence of different types of exercise on HDL function is intricate and depends on various factors, including exercise intensity and individual characteristics.
Objectives. This study aims to investigate the effect of exercise on HDL-C levels in overweight and obese adults, as well as review the mechanisms and pathways by which various exercise types influence HDL-C metabolism in this population.
Methods. A literature search was conducted using the PubMed, Scopus, and Google Scholar databases. Studies were included if they were published in English.
Results. A sequential moderate-to-high-intensity exercise regimen resulted in sustained or gradual improvements in HDL-C levels. For increased HDL-C levels, frequent moderate-to-high-intensity, long-duration exercise at an aerobic threshold in conjunction with body mass reduction and dietary modification is observed from the reviewed studies.
Conclusion. Regular exercise can improve HDL-C levels in overweight and obese individuals. A combination of moderate-to-high-intensity, long-duration exercise at an aerobic threshold with body mass reduction and dietary modification is most effective. Overweight and obese individuals should engage in regular exercise to improve their HDL-C levels and overall health.
Full-Text [PDF 1148 kb]   (471 Downloads)    
 
 
APPLICABLE REMARKS
  • Exercise protocols characterized by moderate to high intensity appear promising for sustaining or gradually elevating HDL-C levels.
  • High-volume training protocols in conjunction with weight loss and favorable dietary modifications seem to be the optimal strategy for improving HDL-C.
  • Further research with larger sample sizes investigating other types of exercise characterized by varied training parameters is needed to better establish the impact of exercise on HDL-C.

Type of Study: Review Article | Subject: Sport Physiology and its related branches
Received: 2023/11/1 | Accepted: 2024/01/9

References
1. 1. Afolabi, H.A., et al., The relationship between obesity and other medical comorbidities. Obesity Medicine, 2020. 17: p. 100164. [doi:10.1016/j.obmed.2019.100164] [DOI:10.1016/j.obmed.2019.100164]
2. Kosmas, C.E., et al., High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context, 2018. 7: p. 212525. [doi:10.7573/dic.212525] [ [DOI:10.7573/dic.212525] [PMID] []
3. Jomard, A. and E. Osto, High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med, 2020. 7: p. 39. [doi:10.3389/fcvm.2020.00039] [ [DOI:10.3389/fcvm.2020.00039] [PMID] []
4. Endo, Y., M. Fujita, and K. Ikewaki, HDL Functions-Current Status and Future Perspectives. Biomolecules, 2023. 13(1). [doi:10.3390/biom13010105] [ [DOI:10.3390/biom13010105] [PMID] []
5. Afolabi, H.A., et al., Obesity: A Prerequisite for Major Chronic Illnesses, in Obesity-Recent Insights and Therapeutic Options. 2023, IntechOpen.
6. Stadler, J.T. and G. Marsche, Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int J Mol Sci, 2020. 21(23). [doi:10.3390/ijms21238985] [ [DOI:10.3390/ijms21238985] [PMID] []
7. Klop, B., J.W.F. Elte, and M. Castro Cabezas, Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 2013. 5(4): p. 1218-1240. [doi:10.3390/nu5041218] [ [DOI:10.3390/nu5041218] [PMID] []
8. Stadler, J.T. and G. Marsche, Obesity-related changes in high-density lipoprotein metabolism and function. International journal of molecular sciences, 2020. 21(23): p. 8985. [doi:10.3390/ijms21238985] [ [DOI:10.3390/ijms21238985] [PMID] []
9. Shahid, S.U. and S. Sarwar, The abnormal lipid profile in obesity and coronary heart disease (CHD) in Pakistani subjects. Lipids in health and disease, 2020. 19(1): p. 1-7. [doi:10.1186/s12944-020-01248-0] [ [DOI:10.1186/s12944-020-01248-0] [PMID] []
10. Tambalis, K., et al., Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology, 2009. 60(5): p. 614-632. [doi:10.1177/0003319708324927] [ [DOI:10.1177/0003319708324927] [PMID]
11. Yusuf, S., et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The lancet, 2004. 364(9438): p. 937-952. [doi:10.1016/S0140-6736(04)17018-9] [ [DOI:10.1016/S0140-6736(04)17018-9] [PMID]
12. März, W., et al., HDL cholesterol: reappraisal of its clinical relevance. Clinical Research in Cardiology, 2017. 106: p. 663-675. [doi:10.1007/s00392-017-1106-1] [ [DOI:10.1007/s00392-017-1106-1] [PMID] []
13. Parhofer, K.G., Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes & metabolism journal, 2015. 39(5): p. 353-362. [doi:10.4093/dmj.2015.39.5.353] [ [DOI:10.4093/dmj.2015.39.5.353] [PMID] []
14. Heymsfield, S.B. and T.A. Wadden, Mechanisms, pathophysiology, and management of obesity. New England Journal of Medicine, 2017. 376(3): p. 254-266. [doi:10.1056/NEJMra1514009] [ [DOI:10.1056/NEJMra1514009] [PMID]
15. Hills, A.P., L.B. Andersen, and N.M. Byrne, Physical activity and obesity in children. British journal of sports medicine, 2011. 45(11): p. 866-870. [doi:10.1136/bjsports-2011-090199] [ [DOI:10.1136/bjsports-2011-090199] [PMID]
16. Balady, G.J., et al., Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the american heart association exercise, cardiac rehabilitation, and prevention committee, the council on clinical cardiology; the councils on cardiovascular nursing, epidemiology and prevention, and nutrition, physical activity, and metabolism; and the american association of cardiovascular and pulmonary rehabilitation. 2007. 115(20): p. 2675-2682. [doi:10.1161/CIRCULATIONAHA.106.180945] [ [DOI:10.1161/CIRCULATIONAHA.106.180945] [PMID]
17. Kercher, V.M., et al., 2023 Fitness Trends from Around the Globe. ACSMs Health Fit J, 2023. 27(1): p. 19-30. [doi:10.1249/FIT.0000000000000836] [DOI:10.1249/FIT.0000000000000836]
18. Durstine, J.L., et al., Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports medicine, 2001. 31: p. 1033-1062. [doi:10.2165/00007256-200131150-00002] [ [DOI:10.2165/00007256-200131150-00002] [PMID]
19. Superko, H., The most common cause of coronary heart disease can be successfully treated by the least expensive therapy-exercise. ACSM Certified. News, 1998. 8: p. 1-5.
20. Kelley, G.A. and K.S. Kelley, Effects of diet, aerobic exercise, or both on non-HDL-C in adults: a meta-analysis of randomized controlled trials. Cholesterol, 2012. 2012. [doi:10.1155/2012/840935] [ [DOI:10.1155/2012/840935] [PMID] []
21. Lemos, G.d.O., R.S. Torrinhas, and D.L. Waitzberg, Nutrients, physical activity, and mitochondrial dysfunction in the setting of metabolic syndrome. Nutrients, 2023. 15(5): p. 1217. [doi:10.3390/nu15051217] [ [DOI:10.3390/nu15051217] [PMID] []
22. Gilyana, M., A. Batrakoulis, and V. Zisi, Physical Activity, Body Image, and Emotional Intelligence Differences in Adults with Overweight and Obesity. Diseases, 2023. 11(2). [doi:10.3390/diseases11020071] [ [DOI:10.3390/diseases11020071] [PMID] []
23. Batrakoulis, A. and I.G. Fatouros, Psychological Adaptations to High-Intensity Interval Training in Overweight and Obese Adults: A Topical Review. Sports (Basel), 2022. 10(5). [doi:10.3390/sports10050064] [ [DOI:10.3390/sports10050064] [PMID] []
24. Drygas, W., et al., Long-term effects of different physical activity levels on coronary heart disease risk factors in middle-aged men. International journal of sports medicine, 2000. 21(04): p. 235-241. [doi:10.1055/s-2000-309] [ [DOI:10.1055/s-2000-309] [PMID]
25. Batrakoulis, A., et al., Dose-response effects of high-intensity interval neuromuscular exercise training on weight loss, performance, health and quality of life in inactive obese adults: Study rationale, design and methods of the DoIT trial. Contemp Clin Trials Commun, 2019. 15: p. 100386. [doi:10.1016/j.conctc.2019.100386] [ [DOI:10.1016/j.conctc.2019.100386] [PMID] []
26. Batrakoulis, A., Psychophysiological Adaptations to Yoga Practice in Overweight and Obese Individuals: A Topical Review. Diseases, 2022. 10(4). [doi:10.3390/diseases10040107] [ [DOI:10.3390/diseases10040107] [PMID] []
27. Batrakoulis, A., Psychophysiological Adaptations to Pilates Training in Overweight and Obese Individuals: A Topical Review. DISEASES, 2022. 10(4). [doi:10.3390/diseases10040071] [ [DOI:10.3390/diseases10040071] [PMID] []
28. Batrakoulis, A., Role of Mind-Body Fitness in Obesity. Diseases, 2022. 11(1). [doi:10.3390/diseases11010001] [ [DOI:10.3390/diseases11010001] [PMID] []
29. Batrakoulis, A., A.Z. Jamurtas, and I.G. Fatouros, High-Intensity Interval Training in Metabolic Diseases: Physiological Adaptations. ACSM's Health & Fitness Journal, 2021. 25(5): p. 54-59. [doi:10.1249/FIT.0000000000000703] [DOI:10.1249/FIT.0000000000000703]
30. Batrakoulis, A., et al., Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials. Circ Cardiovasc Qual Outcomes, 2022: p. 101161CIRCOUTCOMES121008243. [doi:10.1161/CIRCOUTCOMES.121.008243] [ [DOI:10.1161/CIRCOUTCOMES.121.008243] [PMID]
31. Grandjean, P.W., S.F. Crouse, and J.J. Rohack, Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. Journal of Applied Physiology, 2000. 89(2): p. 472-480. [doi:10.1152/jappl.2000.89.2.472] [ [DOI:10.1152/jappl.2000.89.2.472] [PMID]
32. Lund-Katz, S. and M.C. Phillips, High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem, 2010. 51: p. 183-227. [doi:10.1007/978-90-481-8622-8_7] [ [DOI:10.1007/978-90-481-8622-8_7] [PMID] []
33. Kasia, B.E., V.Y. Nyondia, and P.O. Oseajeh, Evaluation of lipid profile pattern among apparently healthy students of Niger Delta University. Annals of Tropical Pathology, 2020. 11(2): p. 146.
34. Kunitake, S.T., K. La Sala, and J.P. Kane, Apolipoprotein AI-containing lipoproteins with pre-beta electrophoretic mobility. Journal of lipid research, 1985. 26(5): p. 549-555. [doi:10.1016/S0022-2275(20)34341-8] [ [DOI:10.1016/S0022-2275(20)34341-8] [PMID]
35. Rosenson, R.S., et al., HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clinical chemistry, 2011. 57(3): p. 392-410. [doi:10.1373/clinchem.2010.155333] [ [DOI:10.1373/clinchem.2010.155333] [PMID]
36. Arungovind, G., A. Kamalanathan, and K. Venkataraman, Atherogenic Dyslipoproteinemia in Type 2 Diabetes Mellitus. Mechanisms of Vascular Defects in Diabetes Mellitus, 2017: p. 451-467. [doi:10.1007/978-3-319-60324-7_20] [DOI:10.1007/978-3-319-60324-7_20]
37. Trajkovska, K.T. and S. Topuzovska, High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatolian journal of cardiology, 2017. 18(2): p. 149. [doi:10.14744/AnatolJCardiol.2017.7608] [ [DOI:10.14744/AnatolJCardiol.2017.7608] [PMID] []
38. Khovidhunkit, W., et al., Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. The Journal of Lipid Research, 2004. 45(7): p. 1169-1196. [doi:10.1194/jlr.R300019-JLR200] [ [DOI:10.1194/jlr.R300019-JLR200] [PMID]
39. Madsen, C.M. and B.G. Nordestgaard, Is it time for new thinking about high-density lipoprotein? 2018, Am Heart Assoc. p. 484-486. [doi:10.1161/ATVBAHA.118.310727] [ [DOI:10.1161/ATVBAHA.118.310727] [PMID]
40. Chapman, M.J., et al., Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. European heart journal, 2010. 31(2): p. 149-164. [doi:10.1093/eurheartj/ehp399] [ [DOI:10.1093/eurheartj/ehp399] [PMID] []
41. Ito, A., et al., Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease. Immunity, 2016. 45(6): p. 1311-1326. [doi:10.1016/j.immuni.2016.11.008] [ [DOI:10.1016/j.immuni.2016.11.008] [PMID] []
42. Catapano, A.L., et al., HDL in innate and adaptive immunity. Cardiovascular research, 2014. 103(3): p. 372-383. [doi:10.1093/cvr/cvu150] [ [DOI:10.1093/cvr/cvu150] [PMID]
43. Madsen, C.M., et al., U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. European heart journal, 2018. 39(14): p. 1181-1190. [doi:10.1093/eurheartj/ehx665] [ [DOI:10.1093/eurheartj/ehx665] [PMID]
44. Rader, D.J. and H.H. Hobbs, Disorders of lipoprotein metabolism. Harrisons principles of internal medicine, 2005. 16(2): p. 2286.
45. Quijada, Z., et al., The triglyceride/HDL‐cholesterol ratio as a marker of cardiovascular risk in obese children; association with traditional and emergent risk factors. Pediatric diabetes, 2008. 9(5): p. 464-471. [doi:10.1111/j.1399-5448.2008.00406.x] [ [DOI:10.1111/j.1399-5448.2008.00406.x] [PMID]
46. Chapman, M.J., et al., Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J, 2011. 32(11): p. 1345-61. [doi:10.1093/eurheartj/ehr112] [ [DOI:10.1093/eurheartj/ehr112] [PMID] []
47. Kontush, A. and M.J. Chapman, Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev, 2006. 58(3): p. 342-74. [doi:10.1124/pr.58.3.1] [ [DOI:10.1124/pr.58.3.1] [PMID]
48. Di Angelantonio, E., et al., Major lipids, apolipoproteins, and risk of vascular disease. Jama, 2009. 302(18): p. 1993-2000. [doi:10.1001/jama.2009.1619] [ [DOI:10.1001/jama.2009.1619] [PMID] []
49. Rashid, S. and J. Genest, Effect of obesity on high-density lipoprotein metabolism. Obesity (Silver Spring), 2007. 15(12): p. 2875-88. [doi:10.1038/oby.2007.342] [ [DOI:10.1038/oby.2007.342] [PMID]
50. Ahmed, H.M., et al., Primary Low Level of High-Density Lipoprotein Cholesterol and Risks of Coronary Heart Disease, Cardiovascular Disease, and Death: Results From the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol, 2016. 183(10): p. 875-83. [doi:10.1093/aje/kwv305] [ [DOI:10.1093/aje/kwv305] [PMID] []
51. Ashen, M.D. and R.S. Blumenthal, Clinical practice. Low HDL cholesterol levels. N Engl J Med, 2005. 353(12): p. 1252-60. [doi:10.1056/NEJMcp044370] [ [DOI:10.1056/NEJMcp044370] [PMID]
52. Golbidi, S. and I. Laher, Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res, 2014. 2014: p. 726861. [doi:10.1155/2014/726861] [ [DOI:10.1155/2014/726861] [PMID] []
53. Mazidi, M., D.P. Mikhailidis, and M. Banach, Associations between risk of overall mortality, cause-specific mortality and level of inflammatory factors with extremely low and high high-density lipoprotein cholesterol levels among American adults. Int J Cardiol, 2019. 276: p. 242-247. [doi:10.1016/j.ijcard.2018.11.095] [ [DOI:10.1016/j.ijcard.2018.11.095] [PMID]
54. Chapman, M.J., et al., Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid--a position paper developed by the European Consensus Panel on HDL-C. Curr Med Res Opin, 2004. 20(8): p. 1253-68. [doi:10.1185/030079904125004402] [ [DOI:10.1185/030079904125004402] [PMID]
55. Barter, P.J., et al., Antiinflammatory properties of HDL. Circ Res, 2004. 95(8): p. 764-72. [doi:10.1161/01.RES.0000146094.59640.13] [ [DOI:10.1161/01.RES.0000146094.59640.13] [PMID]
56. Mineo, C., et al., Endothelial and antithrombotic actions of HDL. Circ Res, 2006. 98(11): p. 1352-64. [doi:10.1161/01.RES.0000225982.01988.93] [ [DOI:10.1161/01.RES.0000225982.01988.93] [PMID]
57. Tso, C., et al., High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol, 2006. 26(5): p. 1144-9. [doi:10.1161/01.ATV.0000216600.37436.cf] [ [DOI:10.1161/01.ATV.0000216600.37436.cf] [PMID]
58. Fryirs, M.A., et al., Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol, 2010. 30(8): p. 1642-8. [doi:10.1161/ATVBAHA.110.207373] [ [DOI:10.1161/ATVBAHA.110.207373] [PMID]
59. Sarzynski, M.A., et al., Effects of Increasing Exercise Intensity and Dose on Multiple Measures of HDL (High-Density Lipoprotein) Function. Arterioscler Thromb Vasc Biol, 2018. 38(4): p. 943-952. [doi:10.1161/ATVBAHA.117.310307] [ [DOI:10.1161/ATVBAHA.117.310307] [PMID] []
60. Shah, A.S., et al., Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res, 2013. 54(10): p. 2575-85. [doi:10.1194/jlr.R035725] [ [DOI:10.1194/jlr.R035725] [PMID] []
61. Kontush, A., M. Lhomme, and M.J. Chapman, Unraveling the complexities of the HDL lipidome. J Lipid Res, 2013. 54(11): p. 2950-63. [doi:10.1194/jlr.R036095] [ [DOI:10.1194/jlr.R036095] [PMID] []
62. Kannan, U., et al., Effect of exercise intensity on lipid profile in sedentary obese adults. J Clin Diagn Res, 2014. 8(7): p. Bc08-10. [doi:10.7860/JCDR/2014/8519.4611] [ [DOI:10.7860/JCDR/2014/8519.4611] [PMID] []
63. Boyer, M., et al., Impact of a one-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia. Am J Physiol Endocrinol Metab, 2018. 315(4): p. E460-e468. [doi:10.1152/ajpendo.00127.2018] [ [DOI:10.1152/ajpendo.00127.2018] [PMID]
64. Furuyama, F., et al., Effects of Cardiac Rehabilitation on High-Density Lipoprotein-mediated Cholesterol Efflux Capacity and Paraoxonase-1 Activity in Patients with Acute Coronary Syndrome. J Atheroscler Thromb, 2018. 25(2): p. 153-169. [doi:10.5551/jat.41095] [ [DOI:10.5551/jat.41095] [PMID] []
65. Wood, P.D., et al., The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women. N Engl J Med, 1991. 325(7): p. 461-6. [doi:10.1056/NEJM199108153250703] [ [DOI:10.1056/NEJM199108153250703] [PMID]
66. Sopko, G., et al., The effects of exercise and weight loss on plasma lipids in young obese men. Metabolism, 1985. 34(3): p. 227-36. [doi:10.1016/0026-0495(85)90005-8] [ [DOI:10.1016/0026-0495(85)90005-8] [PMID]
67. Martin, J.E. and P.M. Dubbert, Exercise applications and promotion in behavioral medicine: current status and future directions. J Consult Clin Psychol, 1982. 50(6): p. 1004-17. [doi:10.1037/0022-006X.50.6.1004] [ [DOI:10.1037/0022-006X.50.6.1004] [PMID]
68. Durstine, J.L., et al., Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med, 2001. 31(15): p. 1033-62. [doi:10.2165/00007256-200131150-00002] [ [DOI:10.2165/00007256-200131150-00002] [PMID]
69. Spate-Douglas, T. and R.E. Keyser, Exercise intensity: its effect on the high-density lipoprotein profile. Arch Phys Med Rehabil, 1999. 80(6): p. 691-5. [doi:10.1016/S0003-9993(99)90174-0] [ [DOI:10.1016/S0003-9993(99)90174-0] [PMID]
70. Drygas, W., A. Jegler, and H. Kunski, Study on threshold dose of physical activity in coronary heart disease prevention. Part I. Relationship between leisure time physical activity and coronary risk factors. Int J Sports Med, 1988. 9(4): p. 275-8. [doi:10.1055/s-2007-1025021] [ [DOI:10.1055/s-2007-1025021] [PMID]
71. Durstine, J.L. and W.L. Haskell, Effects of exercise training on plasma lipids and lipoproteins. Exerc Sport Sci Rev, 1994. 22: p. 477-521. [doi:10.1249/00003677-199401000-00017] [ [DOI:10.1249/00003677-199401000-00017] [PMID]
72. Park, S.K., et al., The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Human Sci, 2003. 22(3): p. 129-35. [doi:10.2114/jpa.22.129] [ [DOI:10.2114/jpa.22.129] [PMID]
73. Ho, S.S., et al., The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health, 2012. 12: p. 704. [doi:10.1186/1471-2458-12-704] [ [DOI:10.1186/1471-2458-12-704] [PMID] []
74. Park, S.M., Y.S. Kwak, and J.G. Ji, The Effects of Combined Exercise on Health-Related Fitness, Endotoxin, and Immune Function of Postmenopausal Women with Abdominal Obesity. J Immunol Res, 2015. 2015: p. 830567. [doi:10.1155/2015/830567] [ [DOI:10.1155/2015/830567] [PMID] []
75. Bruning, R.S. and M. Sturek, Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis, 2015. 57(5): p. 443-53. [doi:10.1016/j.pcad.2014.10.006] [ [DOI:10.1016/j.pcad.2014.10.006] [PMID] []
76. Halverstadt, A., et al., Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism, 2007. 56(4): p. 444-50. [doi:10.1016/j.metabol.2006.10.019] [ [DOI:10.1016/j.metabol.2006.10.019] [PMID]
77. Nassef, Y., et al., The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Adult Taiwanese. Nutrients, 2019. 11(3). [doi:10.3390/nu11030515] [ [DOI:10.3390/nu11030515] [PMID] []
78. Gondim, O.S., et al., Benefits of Regular Exercise on Inflammatory and Cardiovascular Risk Markers in Normal Weight, Overweight and Obese Adults. PLoS One, 2015. 10(10): p. e0140596. [doi:10.1371/journal.pone.0140596] [ [DOI:10.1371/journal.pone.0140596] [PMID] []
79. Aellen, R., W. Hollmann, and U. Boutellier, Effects of aerobic and anaerobic training on plasma lipoproteins. Int J Sports Med, 1993. 14(7): p. 396-400. [doi:10.1055/s-2007-1021198] [ [DOI:10.1055/s-2007-1021198] [PMID]
80. Swain, D.P. and B.A. Franklin, Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol, 2006. 97(1): p. 141-7. [doi:10.1016/j.amjcard.2005.07.130] [ [DOI:10.1016/j.amjcard.2005.07.130] [PMID]
81. Mazurek, K., et al., Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females. Ann Agric Environ Med, 2014. 21(4): p. 844-9. [doi:10.5604/12321966.1129949] [ [DOI:10.5604/12321966.1129949] [PMID]
82. Gordon, P.M., et al., Effects of acute exercise on high density lipoprotein cholesterol and high density lipoprotein subfractions in moderately trained females. Br J Sports Med, 1998. 32(1): p. 63-7. [doi:10.1136/bjsm.32.1.63] [ [DOI:10.1136/bjsm.32.1.63] [PMID] []
83. Visich, P.S., et al., Effects of exercise with varying energy expenditure on high-density lipoprotein-cholesterol. Eur J Appl Physiol Occup Physiol, 1996. 72(3): p. 242-48. [doi:10.1007/BF00838646] [ [DOI:10.1007/BF00838646] [PMID]
84. Farber, H.W., et al., The endurance triathlon: metabolic changes after each event and during recovery. Med Sci Sports Exerc, 1991. 23(8): p. 959-65. [doi:10.1249/00005768-199108000-00013] [ [DOI:10.1249/00005768-199108000-00013] [PMID]
85. Lamon-Fava, S., et al., Acute changes in lipid, lipoprotein, apolipoprotein, and low-density lipoprotein particle size after an endurance triathlon. Metabolism, 1989. 38(9): p. 921-5. [doi:10.1016/0026-0495(89)90243-6] [ [DOI:10.1016/0026-0495(89)90243-6] [PMID]
86. Lee, R., et al., The effects of acute moderate exercise on serum lipids and lipoproteins in mildly obese women. Int J Sports Med, 1991. 12(6): p. 537-42. [doi:10.1055/s-2007-1024730] [ [DOI:10.1055/s-2007-1024730] [PMID]
87. Swank, A.M., et al., The effect of acute exercise on high density lipoprotein-cholesterol and the subfractions in females. Atherosclerosis, 1987. 63(2-3): p. 187-92. [doi:10.1016/0021-9150(87)90120-1] [ [DOI:10.1016/0021-9150(87)90120-1] [PMID]
88. Leon, A.S., et al., Effects of a vigorous walking program on body composition, and carbohydrate and lipid metabolism of obese young men. Am J Clin Nutr, 1979. 32(9): p. 1776-87. [doi:10.1093/ajcn/32.9.1776] [ [DOI:10.1093/ajcn/32.9.1776] [PMID]
89. Lewis, S., et al., Effects of physical activity on weight reduction in obese middle-aged women. Am J Clin Nutr, 1976. 29(2): p. 151-6. [doi:10.1093/ajcn/29.2.151] [ [DOI:10.1093/ajcn/29.2.151] [PMID]
90. Petrenya, N., et al., Obesity and obesity-associated cardiometabolic risk factors in indigenous Nenets women from the rural Nenets Autonomous Area and Russian women from Arkhangelsk city. Int J Circumpolar Health, 2014. 73: p. 23859. [doi:10.3402/ijch.v73.23859] [ [DOI:10.3402/ijch.v73.23859] [PMID] []
91. Bora, K., et al., Variation in Lipid Profile Across Different Patterns of Obesity - Observations from Guwahati, Assam. J Clin Diagn Res, 2015. 9(11): p. Oc17-21. [doi:10.7860/JCDR/2015/15334.6787] [ [DOI:10.7860/JCDR/2015/15334.6787] [PMID] []
92. Bora, K., et al., Association of Decreased High-Density Lipoprotein Cholesterol (HDL-C) With Obesity and Risk Estimates for Decreased HDL-C Attributable to Obesity: Preliminary Findings From a Hospital-Based Study in a City From Northeast India. J Prim Care Community Health, 2017. 8(1): p. 26-30. [doi:10.1177/2150131916664706] [ [DOI:10.1177/2150131916664706] [PMID] []
93. van der Westhuyzen, D.R., F.C. de Beer, and N.R. Webb, HDL cholesterol transport during inflammation. Curr Opin Lipidol, 2007. 18(2): p. 147-51. [doi:10.1097/MOL.0b013e328051b4fe] [ [DOI:10.1097/MOL.0b013e328051b4fe] [PMID]
94. Sorrentino, S.A., et al., Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation, 2010. 121(1): p. 110-122. [doi:10.1161/CIRCULATIONAHA.108.836346] [ [DOI:10.1161/CIRCULATIONAHA.108.836346] [PMID]
95. Rashid, S., K.D. Uffelman, and G.F. Lewis, The mechanism of HDL lowering in hypertriglyceridemic, insulin-resistant states. J Diabetes Complications, 2002. 16(1): p. 24-8. [doi:10.1016/S1056-8727(01)00191-X] [ [DOI:10.1016/S1056-8727(01)00191-X] [PMID]
96. Khera, A.V., et al., Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med, 2011. 364(2): p. 127-35. [doi:10.1056/NEJMoa1001689] [ [DOI:10.1056/NEJMoa1001689] [PMID] []
97. Bertière, M.C., et al., Low high density lipoprotein-2 concentrations in obese male subjects. Atherosclerosis, 1988. 73(1): p. 57-61. [doi:10.1016/0021-9150(88)90163-3] [ [DOI:10.1016/0021-9150(88)90163-3] [PMID]
98. Després, J.P., et al., Adipose tissue distribution and plasma lipoprotein levels in obese women. Importance of intra-abdominal fat. Arteriosclerosis, 1989. 9(2): p. 203-10. [doi:10.1161/01.ATV.9.2.203] [ [DOI:10.1161/01.ATV.9.2.203] [PMID]
99. Ostlund, R.E., Jr., et al., The ratio of waist-to-hip circumference, plasma insulin level, and glucose intolerance as independent predictors of the HDL2 cholesterol level in older adults. N Engl J Med, 1990. 322(4): p. 229-34. [doi:10.1056/NEJM199001253220404] [ [DOI:10.1056/NEJM199001253220404] [PMID]
100. Coon, P.J., et al., Effects of body composition and exercise capacity on glucose tolerance, insulin, and lipoprotein lipids in healthy older men: a cross-sectional and longitudinal intervention study. 1989. 38(12): p. 1201-1209. [DOI:10.1016/0026-0495(89)90160-1] [PMID]
101. Ratajczak, M., et al., Effects of Endurance and Endurance-Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial. Int J Environ Res Public Health, 2019. 16(21). [DOI:10.3390/ijerph16214291] [PMID] []
102. Sgouraki, E., A. Tsopanakis, and C. Tsopanakis, Acute exercise: response of HDL-C, LDL-C lipoproteins and HDL-C subfractions levels in selected sport disciplines. J Sports Med Phys Fitness, 2001. 41(3): p. 386-91.
103. Stanton, K.M., et al., Moderate- and High-Intensity Exercise Improves Lipoprotein Profile and Cholesterol Efflux Capacity in Healthy Young Men. J Am Heart Assoc, 2022. 11(12): p. e023386. [DOI:10.1161/JAHA.121.023386] [PMID] []
104. Despres, J.P., et al., Loss of abdominal fat and metabolic response to exercise training in obese women. 1991. 261(2): p. E159-E167. [DOI:10.1152/ajpendo.1991.261.2.E159] [PMID]
105. Lamarche, B., et al., Is body fat loss a determinant factor in the improvement of carbohydrate and lipid metabolism following aerobic exercise training in obese women? 1992. 41(11): p. 1249-1256. [DOI:10.1016/0026-0495(92)90017-5] [PMID]
106. Manning, J.M., et al., Effects of a resistive training program on lipoprotein--lipid levels in obese women. 1991. 23(11): p. 1222-1226. [DOI:10.1249/00005768-199111000-00003]
107. Nieman, D.C., et al., Reducing-diet and exercise-training effects on serum lipids and lipoproteins in mildly obese women. 1990. 52(4): p. 640-645. [DOI:10.1093/ajcn/52.4.640] [PMID]
108. Szmedra, L., et al., Exercise tolerance, body composition and blood lipids in obese African-American women following short-term training. 1998. 38(1): p. 59-65.
109. Wesnigk, J., et al., Impact of lifestyle intervention on HDL-induced eNOS activation and cholesterol efflux capacity in obese adolescent. 2016. 2016. [DOI:10.1155/2016/2820432] [PMID] []
110. Roberts, C.K., et al., Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. 2006. [DOI:10.1152/japplphysiol.00345.2006] [PMID]
111. Park, S.-M., Y.-S. Kwak, and J.-G.J.J.o.i.r. Ji, The effects of combined exercise on health-related fitness, endotoxin, and immune function of postmenopausal women with abdominal obesity. 2015. 2015. [DOI:10.1155/2015/830567] [PMID] []
112. Nieman, D.C., et al., Reducing diet and/or exercise training decreases the lipid and lipoprotein risk factors of moderately obese women. 2002. 21(4): p. 344-350. [DOI:10.1080/07315724.2002.10719233] [PMID]
113. Nicklas, B.J., et al., Increases in high-density lipoprotein cholesterol with endurance exercise training are blunted in obese compared with lean men. 1997. 46(5): p. 556-561. [DOI:10.1016/S0026-0495(97)90194-3] [PMID]
114. Roh, H.-T., S.-Y. Cho, and W.-Y.J.J.o.c.m. So, A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. 2020. 9(3): p. 842. [DOI:10.3390/jcm9030842] [PMID] []
115. Puengsuwan, P., et al., Wand stretching exercise decreases abdominal obesity among adults with high body mass index without altering fat oxidation. 2020. 11. [DOI:10.3389/fphys.2020.565573] [PMID] []
116. Marcon, E.R., et al., What is the best treatment before bariatric surgery? Exercise, exercise and group therapy, or conventional waiting: a randomized controlled trial. 2017. 27(3): p. 763-773. [DOI:10.1007/s11695-016-2365-z] [PMID]
117. Marques, L.R., et al., Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol. Front Physiol, 2018. 9: p. 526. [doi:10.3389/fphys.2018.00526] [ [DOI:10.3389/fphys.2018.00526] [PMID] []
118. Leclerc, S., et al., High density lipoprotein cholesterol, habitual physical activity and physical fitness. Atherosclerosis, 1985. 57(1): p. 43-51. [doi:10.1016/0021-9150(85)90136-4] [ [DOI:10.1016/0021-9150(85)90136-4] [PMID]
119. Nieman, D.C., et al., Reducing diet and/or exercise training decreases the lipid and lipoprotein risk factors of moderately obese women. J Am Coll Nutr, 2002. 21(4): p. 344-50. [doi:10.1080/07315724.2002.10719233] [ [DOI:10.1080/07315724.2002.10719233] [PMID]
120. Mogharnasi, M., R. Eslami, and B. Behnam, Effects of endurance and circuit resistance trainings on lipid profile, heart rate, and hematological parameters in obese male students. Annals of Applied Sport Science, 2014. 2(4): p. 11-22. [doi:10.18869/acadpub.aassjournal.2.4.11] [DOI:10.18869/acadpub.aassjournal.2.4.11]
121. Sigal, R.J., et al., Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Annals of internal medicine, 2007. 147(6): p. 357-369. [doi:10.7326/0003-4819-147-6-200709180-00005] [ [DOI:10.7326/0003-4819-147-6-200709180-00005] [PMID]
122. Azarbayjani, M.A., et al., Effects of combined aerobic and resistant training on lipid profile and glycemic control in sedentary men. Int Med J, 2014. 21(2): p. 132-136.
123. Roh, H.T., S.Y. Cho, and W.Y. So, A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. J Clin Med, 2020. 9(3). [doi:10.3390/jcm9030842] [ [DOI:10.3390/jcm9030842] [PMID] []
124. Al-Mhanna, S.B., et al., Effects of combined aerobic exercise and diet on cardiometabolic health in patients with obesity and type 2 diabetes: a systematic review and meta-analysis. BMC Sports Science, Medicine and Rehabilitation, 2023. 15(1): p. 165. [doi:10.1186/s13102-023-00766-5] [ [DOI:10.1186/s13102-023-00766-5] [PMID] []
125. Williams, P.T., et al., The effects of running mileage and duration on plasma lipoprotein levels. Jama, 1982. 247(19): p. 2674-9. [doi:10.1001/jama.1982.03320440022026] [ [DOI:10.1001/jama.1982.03320440022026] [PMID]
126. Stein, R.A., et al., Effects of different exercise training intensities on lipoprotein cholesterol fractions in healthy middle-aged men. Am Heart J, 1990. 119(2 Pt 1): p. 277-83. [doi:10.1016/S0002-8703(05)80017-1] [ [DOI:10.1016/S0002-8703(05)80017-1] [PMID]
127. Myhre, K., et al., Relationship of high density lipoprotein cholesterol concentration to the duration and intensity of endurance training. Scand J Clin Lab Invest, 1981. 41(3): p. 303-9. [doi:10.1080/00365518109092049] [ [DOI:10.1080/00365518109092049] [PMID]
128. Williams, P.T., Relationships of heart disease risk factors to exercise quantity and intensity. Arch Intern Med, 1998. 158(3): p. 237-45. [doi:10.1001/archinte.158.3.237] [ [DOI:10.1001/archinte.158.3.237] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb