1. 1. Afolabi, H.A., et al., The relationship between obesity and other medical comorbidities. Obesity Medicine, 2020. 17: p. 100164. [doi:10.1016/j.obmed.2019.100164] [
DOI:10.1016/j.obmed.2019.100164]
2. Kosmas, C.E., et al., High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context, 2018. 7: p. 212525. [doi:10.7573/dic.212525] [ [
DOI:10.7573/dic.212525] [
PMID] [
]
3. Jomard, A. and E. Osto, High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med, 2020. 7: p. 39. [doi:10.3389/fcvm.2020.00039] [ [
DOI:10.3389/fcvm.2020.00039] [
PMID] [
]
4. Endo, Y., M. Fujita, and K. Ikewaki, HDL Functions-Current Status and Future Perspectives. Biomolecules, 2023. 13(1). [doi:10.3390/biom13010105] [ [
DOI:10.3390/biom13010105] [
PMID] [
]
5. Afolabi, H.A., et al., Obesity: A Prerequisite for Major Chronic Illnesses, in Obesity-Recent Insights and Therapeutic Options. 2023, IntechOpen.
6. Stadler, J.T. and G. Marsche, Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function. Int J Mol Sci, 2020. 21(23). [doi:10.3390/ijms21238985] [ [
DOI:10.3390/ijms21238985] [
PMID] [
]
7. Klop, B., J.W.F. Elte, and M. Castro Cabezas, Dyslipidemia in obesity: mechanisms and potential targets. Nutrients, 2013. 5(4): p. 1218-1240. [doi:10.3390/nu5041218] [ [
DOI:10.3390/nu5041218] [
PMID] [
]
8. Stadler, J.T. and G. Marsche, Obesity-related changes in high-density lipoprotein metabolism and function. International journal of molecular sciences, 2020. 21(23): p. 8985. [doi:10.3390/ijms21238985] [ [
DOI:10.3390/ijms21238985] [
PMID] [
]
9. Shahid, S.U. and S. Sarwar, The abnormal lipid profile in obesity and coronary heart disease (CHD) in Pakistani subjects. Lipids in health and disease, 2020. 19(1): p. 1-7. [doi:10.1186/s12944-020-01248-0] [ [
DOI:10.1186/s12944-020-01248-0] [
PMID] [
]
10. Tambalis, K., et al., Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology, 2009. 60(5): p. 614-632. [doi:10.1177/0003319708324927] [ [
DOI:10.1177/0003319708324927] [
PMID]
11. Yusuf, S., et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The lancet, 2004. 364(9438): p. 937-952. [doi:10.1016/S0140-6736(04)17018-9] [ [
DOI:10.1016/S0140-6736(04)17018-9] [
PMID]
12. März, W., et al., HDL cholesterol: reappraisal of its clinical relevance. Clinical Research in Cardiology, 2017. 106: p. 663-675. [doi:10.1007/s00392-017-1106-1] [ [
DOI:10.1007/s00392-017-1106-1] [
PMID] [
]
13. Parhofer, K.G., Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes & metabolism journal, 2015. 39(5): p. 353-362. [doi:10.4093/dmj.2015.39.5.353] [ [
DOI:10.4093/dmj.2015.39.5.353] [
PMID] [
]
14. Heymsfield, S.B. and T.A. Wadden, Mechanisms, pathophysiology, and management of obesity. New England Journal of Medicine, 2017. 376(3): p. 254-266. [doi:10.1056/NEJMra1514009] [ [
DOI:10.1056/NEJMra1514009] [
PMID]
15. Hills, A.P., L.B. Andersen, and N.M. Byrne, Physical activity and obesity in children. British journal of sports medicine, 2011. 45(11): p. 866-870. [doi:10.1136/bjsports-2011-090199] [ [
DOI:10.1136/bjsports-2011-090199] [
PMID]
16. Balady, G.J., et al., Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the american heart association exercise, cardiac rehabilitation, and prevention committee, the council on clinical cardiology; the councils on cardiovascular nursing, epidemiology and prevention, and nutrition, physical activity, and metabolism; and the american association of cardiovascular and pulmonary rehabilitation. 2007. 115(20): p. 2675-2682. [doi:10.1161/CIRCULATIONAHA.106.180945] [ [
DOI:10.1161/CIRCULATIONAHA.106.180945] [
PMID]
17. Kercher, V.M., et al., 2023 Fitness Trends from Around the Globe. ACSMs Health Fit J, 2023. 27(1): p. 19-30. [doi:10.1249/FIT.0000000000000836] [
DOI:10.1249/FIT.0000000000000836]
18. Durstine, J.L., et al., Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports medicine, 2001. 31: p. 1033-1062. [doi:10.2165/00007256-200131150-00002] [ [
DOI:10.2165/00007256-200131150-00002] [
PMID]
19. Superko, H., The most common cause of coronary heart disease can be successfully treated by the least expensive therapy-exercise. ACSM Certified. News, 1998. 8: p. 1-5.
20. Kelley, G.A. and K.S. Kelley, Effects of diet, aerobic exercise, or both on non-HDL-C in adults: a meta-analysis of randomized controlled trials. Cholesterol, 2012. 2012. [doi:10.1155/2012/840935] [ [
DOI:10.1155/2012/840935] [
PMID] [
]
21. Lemos, G.d.O., R.S. Torrinhas, and D.L. Waitzberg, Nutrients, physical activity, and mitochondrial dysfunction in the setting of metabolic syndrome. Nutrients, 2023. 15(5): p. 1217. [doi:10.3390/nu15051217] [ [
DOI:10.3390/nu15051217] [
PMID] [
]
22. Gilyana, M., A. Batrakoulis, and V. Zisi, Physical Activity, Body Image, and Emotional Intelligence Differences in Adults with Overweight and Obesity. Diseases, 2023. 11(2). [doi:10.3390/diseases11020071] [ [
DOI:10.3390/diseases11020071] [
PMID] [
]
23. Batrakoulis, A. and I.G. Fatouros, Psychological Adaptations to High-Intensity Interval Training in Overweight and Obese Adults: A Topical Review. Sports (Basel), 2022. 10(5). [doi:10.3390/sports10050064] [ [
DOI:10.3390/sports10050064] [
PMID] [
]
24. Drygas, W., et al., Long-term effects of different physical activity levels on coronary heart disease risk factors in middle-aged men. International journal of sports medicine, 2000. 21(04): p. 235-241. [doi:10.1055/s-2000-309] [ [
DOI:10.1055/s-2000-309] [
PMID]
25. Batrakoulis, A., et al., Dose-response effects of high-intensity interval neuromuscular exercise training on weight loss, performance, health and quality of life in inactive obese adults: Study rationale, design and methods of the DoIT trial. Contemp Clin Trials Commun, 2019. 15: p. 100386. [doi:10.1016/j.conctc.2019.100386] [ [
DOI:10.1016/j.conctc.2019.100386] [
PMID] [
]
26. Batrakoulis, A., Psychophysiological Adaptations to Yoga Practice in Overweight and Obese Individuals: A Topical Review. Diseases, 2022. 10(4). [doi:10.3390/diseases10040107] [ [
DOI:10.3390/diseases10040107] [
PMID] [
]
27. Batrakoulis, A., Psychophysiological Adaptations to Pilates Training in Overweight and Obese Individuals: A Topical Review. DISEASES, 2022. 10(4). [doi:10.3390/diseases10040071] [ [
DOI:10.3390/diseases10040071] [
PMID] [
]
28. Batrakoulis, A., Role of Mind-Body Fitness in Obesity. Diseases, 2022. 11(1). [doi:10.3390/diseases11010001] [ [
DOI:10.3390/diseases11010001] [
PMID] [
]
29. Batrakoulis, A., A.Z. Jamurtas, and I.G. Fatouros, High-Intensity Interval Training in Metabolic Diseases: Physiological Adaptations. ACSM's Health & Fitness Journal, 2021. 25(5): p. 54-59. [doi:10.1249/FIT.0000000000000703] [
DOI:10.1249/FIT.0000000000000703]
30. Batrakoulis, A., et al., Comparative Efficacy of 5 Exercise Types on Cardiometabolic Health in Overweight and Obese Adults: A Systematic Review and Network Meta-Analysis of 81 Randomized Controlled Trials. Circ Cardiovasc Qual Outcomes, 2022: p. 101161CIRCOUTCOMES121008243. [doi:10.1161/CIRCOUTCOMES.121.008243] [ [
DOI:10.1161/CIRCOUTCOMES.121.008243] [
PMID]
31. Grandjean, P.W., S.F. Crouse, and J.J. Rohack, Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. Journal of Applied Physiology, 2000. 89(2): p. 472-480. [doi:10.1152/jappl.2000.89.2.472] [ [
DOI:10.1152/jappl.2000.89.2.472] [
PMID]
32. Lund-Katz, S. and M.C. Phillips, High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem, 2010. 51: p. 183-227. [doi:10.1007/978-90-481-8622-8_7] [ [
DOI:10.1007/978-90-481-8622-8_7] [
PMID] [
]
33. Kasia, B.E., V.Y. Nyondia, and P.O. Oseajeh, Evaluation of lipid profile pattern among apparently healthy students of Niger Delta University. Annals of Tropical Pathology, 2020. 11(2): p. 146.
34. Kunitake, S.T., K. La Sala, and J.P. Kane, Apolipoprotein AI-containing lipoproteins with pre-beta electrophoretic mobility. Journal of lipid research, 1985. 26(5): p. 549-555. [doi:10.1016/S0022-2275(20)34341-8] [ [
DOI:10.1016/S0022-2275(20)34341-8] [
PMID]
35. Rosenson, R.S., et al., HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clinical chemistry, 2011. 57(3): p. 392-410. [doi:10.1373/clinchem.2010.155333] [ [
DOI:10.1373/clinchem.2010.155333] [
PMID]
36. Arungovind, G., A. Kamalanathan, and K. Venkataraman, Atherogenic Dyslipoproteinemia in Type 2 Diabetes Mellitus. Mechanisms of Vascular Defects in Diabetes Mellitus, 2017: p. 451-467. [doi:10.1007/978-3-319-60324-7_20] [
DOI:10.1007/978-3-319-60324-7_20]
37. Trajkovska, K.T. and S. Topuzovska, High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatolian journal of cardiology, 2017. 18(2): p. 149. [doi:10.14744/AnatolJCardiol.2017.7608] [ [
DOI:10.14744/AnatolJCardiol.2017.7608] [
PMID] [
]
38. Khovidhunkit, W., et al., Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. The Journal of Lipid Research, 2004. 45(7): p. 1169-1196. [doi:10.1194/jlr.R300019-JLR200] [ [
DOI:10.1194/jlr.R300019-JLR200] [
PMID]
39. Madsen, C.M. and B.G. Nordestgaard, Is it time for new thinking about high-density lipoprotein? 2018, Am Heart Assoc. p. 484-486. [doi:10.1161/ATVBAHA.118.310727] [ [
DOI:10.1161/ATVBAHA.118.310727] [
PMID]
40. Chapman, M.J., et al., Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors. European heart journal, 2010. 31(2): p. 149-164. [doi:10.1093/eurheartj/ehp399] [ [
DOI:10.1093/eurheartj/ehp399] [
PMID] [
]
41. Ito, A., et al., Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease. Immunity, 2016. 45(6): p. 1311-1326. [doi:10.1016/j.immuni.2016.11.008] [ [
DOI:10.1016/j.immuni.2016.11.008] [
PMID] [
]
42. Catapano, A.L., et al., HDL in innate and adaptive immunity. Cardiovascular research, 2014. 103(3): p. 372-383. [doi:10.1093/cvr/cvu150] [ [
DOI:10.1093/cvr/cvu150] [
PMID]
43. Madsen, C.M., et al., U-shaped relationship of HDL and risk of infectious disease: two prospective population-based cohort studies. European heart journal, 2018. 39(14): p. 1181-1190. [doi:10.1093/eurheartj/ehx665] [ [
DOI:10.1093/eurheartj/ehx665] [
PMID]
44. Rader, D.J. and H.H. Hobbs, Disorders of lipoprotein metabolism. Harrisons principles of internal medicine, 2005. 16(2): p. 2286.
45. Quijada, Z., et al., The triglyceride/HDL‐cholesterol ratio as a marker of cardiovascular risk in obese children; association with traditional and emergent risk factors. Pediatric diabetes, 2008. 9(5): p. 464-471. [doi:10.1111/j.1399-5448.2008.00406.x] [ [
DOI:10.1111/j.1399-5448.2008.00406.x] [
PMID]
46. Chapman, M.J., et al., Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J, 2011. 32(11): p. 1345-61. [doi:10.1093/eurheartj/ehr112] [ [
DOI:10.1093/eurheartj/ehr112] [
PMID] [
]
47. Kontush, A. and M.J. Chapman, Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev, 2006. 58(3): p. 342-74. [doi:10.1124/pr.58.3.1] [ [
DOI:10.1124/pr.58.3.1] [
PMID]
48. Di Angelantonio, E., et al., Major lipids, apolipoproteins, and risk of vascular disease. Jama, 2009. 302(18): p. 1993-2000. [doi:10.1001/jama.2009.1619] [ [
DOI:10.1001/jama.2009.1619] [
PMID] [
]
49. Rashid, S. and J. Genest, Effect of obesity on high-density lipoprotein metabolism. Obesity (Silver Spring), 2007. 15(12): p. 2875-88. [doi:10.1038/oby.2007.342] [ [
DOI:10.1038/oby.2007.342] [
PMID]
50. Ahmed, H.M., et al., Primary Low Level of High-Density Lipoprotein Cholesterol and Risks of Coronary Heart Disease, Cardiovascular Disease, and Death: Results From the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol, 2016. 183(10): p. 875-83. [doi:10.1093/aje/kwv305] [ [
DOI:10.1093/aje/kwv305] [
PMID] [
]
51. Ashen, M.D. and R.S. Blumenthal, Clinical practice. Low HDL cholesterol levels. N Engl J Med, 2005. 353(12): p. 1252-60. [doi:10.1056/NEJMcp044370] [ [
DOI:10.1056/NEJMcp044370] [
PMID]
52. Golbidi, S. and I. Laher, Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res, 2014. 2014: p. 726861. [doi:10.1155/2014/726861] [ [
DOI:10.1155/2014/726861] [
PMID] [
]
53. Mazidi, M., D.P. Mikhailidis, and M. Banach, Associations between risk of overall mortality, cause-specific mortality and level of inflammatory factors with extremely low and high high-density lipoprotein cholesterol levels among American adults. Int J Cardiol, 2019. 276: p. 242-247. [doi:10.1016/j.ijcard.2018.11.095] [ [
DOI:10.1016/j.ijcard.2018.11.095] [
PMID]
54. Chapman, M.J., et al., Raising high-density lipoprotein cholesterol with reduction of cardiovascular risk: the role of nicotinic acid--a position paper developed by the European Consensus Panel on HDL-C. Curr Med Res Opin, 2004. 20(8): p. 1253-68. [doi:10.1185/030079904125004402] [ [
DOI:10.1185/030079904125004402] [
PMID]
55. Barter, P.J., et al., Antiinflammatory properties of HDL. Circ Res, 2004. 95(8): p. 764-72. [doi:10.1161/01.RES.0000146094.59640.13] [ [
DOI:10.1161/01.RES.0000146094.59640.13] [
PMID]
56. Mineo, C., et al., Endothelial and antithrombotic actions of HDL. Circ Res, 2006. 98(11): p. 1352-64. [doi:10.1161/01.RES.0000225982.01988.93] [ [
DOI:10.1161/01.RES.0000225982.01988.93] [
PMID]
57. Tso, C., et al., High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol, 2006. 26(5): p. 1144-9. [doi:10.1161/01.ATV.0000216600.37436.cf] [ [
DOI:10.1161/01.ATV.0000216600.37436.cf] [
PMID]
58. Fryirs, M.A., et al., Effects of high-density lipoproteins on pancreatic beta-cell insulin secretion. Arterioscler Thromb Vasc Biol, 2010. 30(8): p. 1642-8. [doi:10.1161/ATVBAHA.110.207373] [ [
DOI:10.1161/ATVBAHA.110.207373] [
PMID]
59. Sarzynski, M.A., et al., Effects of Increasing Exercise Intensity and Dose on Multiple Measures of HDL (High-Density Lipoprotein) Function. Arterioscler Thromb Vasc Biol, 2018. 38(4): p. 943-952. [doi:10.1161/ATVBAHA.117.310307] [ [
DOI:10.1161/ATVBAHA.117.310307] [
PMID] [
]
60. Shah, A.S., et al., Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res, 2013. 54(10): p. 2575-85. [doi:10.1194/jlr.R035725] [ [
DOI:10.1194/jlr.R035725] [
PMID] [
]
61. Kontush, A., M. Lhomme, and M.J. Chapman, Unraveling the complexities of the HDL lipidome. J Lipid Res, 2013. 54(11): p. 2950-63. [doi:10.1194/jlr.R036095] [ [
DOI:10.1194/jlr.R036095] [
PMID] [
]
62. Kannan, U., et al., Effect of exercise intensity on lipid profile in sedentary obese adults. J Clin Diagn Res, 2014. 8(7): p. Bc08-10. [doi:10.7860/JCDR/2014/8519.4611] [ [
DOI:10.7860/JCDR/2014/8519.4611] [
PMID] [
]
63. Boyer, M., et al., Impact of a one-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia. Am J Physiol Endocrinol Metab, 2018. 315(4): p. E460-e468. [doi:10.1152/ajpendo.00127.2018] [ [
DOI:10.1152/ajpendo.00127.2018] [
PMID]
64. Furuyama, F., et al., Effects of Cardiac Rehabilitation on High-Density Lipoprotein-mediated Cholesterol Efflux Capacity and Paraoxonase-1 Activity in Patients with Acute Coronary Syndrome. J Atheroscler Thromb, 2018. 25(2): p. 153-169. [doi:10.5551/jat.41095] [ [
DOI:10.5551/jat.41095] [
PMID] [
]
65. Wood, P.D., et al., The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women. N Engl J Med, 1991. 325(7): p. 461-6. [doi:10.1056/NEJM199108153250703] [ [
DOI:10.1056/NEJM199108153250703] [
PMID]
66. Sopko, G., et al., The effects of exercise and weight loss on plasma lipids in young obese men. Metabolism, 1985. 34(3): p. 227-36. [doi:10.1016/0026-0495(85)90005-8] [ [
DOI:10.1016/0026-0495(85)90005-8] [
PMID]
67. Martin, J.E. and P.M. Dubbert, Exercise applications and promotion in behavioral medicine: current status and future directions. J Consult Clin Psychol, 1982. 50(6): p. 1004-17. [doi:10.1037/0022-006X.50.6.1004] [ [
DOI:10.1037/0022-006X.50.6.1004] [
PMID]
68. Durstine, J.L., et al., Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med, 2001. 31(15): p. 1033-62. [doi:10.2165/00007256-200131150-00002] [ [
DOI:10.2165/00007256-200131150-00002] [
PMID]
69. Spate-Douglas, T. and R.E. Keyser, Exercise intensity: its effect on the high-density lipoprotein profile. Arch Phys Med Rehabil, 1999. 80(6): p. 691-5. [doi:10.1016/S0003-9993(99)90174-0] [ [
DOI:10.1016/S0003-9993(99)90174-0] [
PMID]
70. Drygas, W., A. Jegler, and H. Kunski, Study on threshold dose of physical activity in coronary heart disease prevention. Part I. Relationship between leisure time physical activity and coronary risk factors. Int J Sports Med, 1988. 9(4): p. 275-8. [doi:10.1055/s-2007-1025021] [ [
DOI:10.1055/s-2007-1025021] [
PMID]
71. Durstine, J.L. and W.L. Haskell, Effects of exercise training on plasma lipids and lipoproteins. Exerc Sport Sci Rev, 1994. 22: p. 477-521. [doi:10.1249/00003677-199401000-00017] [ [
DOI:10.1249/00003677-199401000-00017] [
PMID]
72. Park, S.K., et al., The effect of combined aerobic and resistance exercise training on abdominal fat in obese middle-aged women. J Physiol Anthropol Appl Human Sci, 2003. 22(3): p. 129-35. [doi:10.2114/jpa.22.129] [ [
DOI:10.2114/jpa.22.129] [
PMID]
73. Ho, S.S., et al., The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health, 2012. 12: p. 704. [doi:10.1186/1471-2458-12-704] [ [
DOI:10.1186/1471-2458-12-704] [
PMID] [
]
74. Park, S.M., Y.S. Kwak, and J.G. Ji, The Effects of Combined Exercise on Health-Related Fitness, Endotoxin, and Immune Function of Postmenopausal Women with Abdominal Obesity. J Immunol Res, 2015. 2015: p. 830567. [doi:10.1155/2015/830567] [ [
DOI:10.1155/2015/830567] [
PMID] [
]
75. Bruning, R.S. and M. Sturek, Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis, 2015. 57(5): p. 443-53. [doi:10.1016/j.pcad.2014.10.006] [ [
DOI:10.1016/j.pcad.2014.10.006] [
PMID] [
]
76. Halverstadt, A., et al., Endurance exercise training raises high-density lipoprotein cholesterol and lowers small low-density lipoprotein and very low-density lipoprotein independent of body fat phenotypes in older men and women. Metabolism, 2007. 56(4): p. 444-50. [doi:10.1016/j.metabol.2006.10.019] [ [
DOI:10.1016/j.metabol.2006.10.019] [
PMID]
77. Nassef, Y., et al., The Impact of Aerobic Exercise and Badminton on HDL Cholesterol Levels in Adult Taiwanese. Nutrients, 2019. 11(3). [doi:10.3390/nu11030515] [ [
DOI:10.3390/nu11030515] [
PMID] [
]
78. Gondim, O.S., et al., Benefits of Regular Exercise on Inflammatory and Cardiovascular Risk Markers in Normal Weight, Overweight and Obese Adults. PLoS One, 2015. 10(10): p. e0140596. [doi:10.1371/journal.pone.0140596] [ [
DOI:10.1371/journal.pone.0140596] [
PMID] [
]
79. Aellen, R., W. Hollmann, and U. Boutellier, Effects of aerobic and anaerobic training on plasma lipoproteins. Int J Sports Med, 1993. 14(7): p. 396-400. [doi:10.1055/s-2007-1021198] [ [
DOI:10.1055/s-2007-1021198] [
PMID]
80. Swain, D.P. and B.A. Franklin, Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol, 2006. 97(1): p. 141-7. [doi:10.1016/j.amjcard.2005.07.130] [ [
DOI:10.1016/j.amjcard.2005.07.130] [
PMID]
81. Mazurek, K., et al., Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females. Ann Agric Environ Med, 2014. 21(4): p. 844-9. [doi:10.5604/12321966.1129949] [ [
DOI:10.5604/12321966.1129949] [
PMID]
82. Gordon, P.M., et al., Effects of acute exercise on high density lipoprotein cholesterol and high density lipoprotein subfractions in moderately trained females. Br J Sports Med, 1998. 32(1): p. 63-7. [doi:10.1136/bjsm.32.1.63] [ [
DOI:10.1136/bjsm.32.1.63] [
PMID] [
]
83. Visich, P.S., et al., Effects of exercise with varying energy expenditure on high-density lipoprotein-cholesterol. Eur J Appl Physiol Occup Physiol, 1996. 72(3): p. 242-48. [doi:10.1007/BF00838646] [ [
DOI:10.1007/BF00838646] [
PMID]
84. Farber, H.W., et al., The endurance triathlon: metabolic changes after each event and during recovery. Med Sci Sports Exerc, 1991. 23(8): p. 959-65. [doi:10.1249/00005768-199108000-00013] [ [
DOI:10.1249/00005768-199108000-00013] [
PMID]
85. Lamon-Fava, S., et al., Acute changes in lipid, lipoprotein, apolipoprotein, and low-density lipoprotein particle size after an endurance triathlon. Metabolism, 1989. 38(9): p. 921-5. [doi:10.1016/0026-0495(89)90243-6] [ [
DOI:10.1016/0026-0495(89)90243-6] [
PMID]
86. Lee, R., et al., The effects of acute moderate exercise on serum lipids and lipoproteins in mildly obese women. Int J Sports Med, 1991. 12(6): p. 537-42. [doi:10.1055/s-2007-1024730] [ [
DOI:10.1055/s-2007-1024730] [
PMID]
87. Swank, A.M., et al., The effect of acute exercise on high density lipoprotein-cholesterol and the subfractions in females. Atherosclerosis, 1987. 63(2-3): p. 187-92. [doi:10.1016/0021-9150(87)90120-1] [ [
DOI:10.1016/0021-9150(87)90120-1] [
PMID]
88. Leon, A.S., et al., Effects of a vigorous walking program on body composition, and carbohydrate and lipid metabolism of obese young men. Am J Clin Nutr, 1979. 32(9): p. 1776-87. [doi:10.1093/ajcn/32.9.1776] [ [
DOI:10.1093/ajcn/32.9.1776] [
PMID]
89. Lewis, S., et al., Effects of physical activity on weight reduction in obese middle-aged women. Am J Clin Nutr, 1976. 29(2): p. 151-6. [doi:10.1093/ajcn/29.2.151] [ [
DOI:10.1093/ajcn/29.2.151] [
PMID]
90. Petrenya, N., et al., Obesity and obesity-associated cardiometabolic risk factors in indigenous Nenets women from the rural Nenets Autonomous Area and Russian women from Arkhangelsk city. Int J Circumpolar Health, 2014. 73: p. 23859. [doi:10.3402/ijch.v73.23859] [ [
DOI:10.3402/ijch.v73.23859] [
PMID] [
]
91. Bora, K., et al., Variation in Lipid Profile Across Different Patterns of Obesity - Observations from Guwahati, Assam. J Clin Diagn Res, 2015. 9(11): p. Oc17-21. [doi:10.7860/JCDR/2015/15334.6787] [ [
DOI:10.7860/JCDR/2015/15334.6787] [
PMID] [
]
92. Bora, K., et al., Association of Decreased High-Density Lipoprotein Cholesterol (HDL-C) With Obesity and Risk Estimates for Decreased HDL-C Attributable to Obesity: Preliminary Findings From a Hospital-Based Study in a City From Northeast India. J Prim Care Community Health, 2017. 8(1): p. 26-30. [doi:10.1177/2150131916664706] [ [
DOI:10.1177/2150131916664706] [
PMID] [
]
93. van der Westhuyzen, D.R., F.C. de Beer, and N.R. Webb, HDL cholesterol transport during inflammation. Curr Opin Lipidol, 2007. 18(2): p. 147-51. [doi:10.1097/MOL.0b013e328051b4fe] [ [
DOI:10.1097/MOL.0b013e328051b4fe] [
PMID]
94. Sorrentino, S.A., et al., Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation, 2010. 121(1): p. 110-122. [doi:10.1161/CIRCULATIONAHA.108.836346] [ [
DOI:10.1161/CIRCULATIONAHA.108.836346] [
PMID]
95. Rashid, S., K.D. Uffelman, and G.F. Lewis, The mechanism of HDL lowering in hypertriglyceridemic, insulin-resistant states. J Diabetes Complications, 2002. 16(1): p. 24-8. [doi:10.1016/S1056-8727(01)00191-X] [ [
DOI:10.1016/S1056-8727(01)00191-X] [
PMID]
96. Khera, A.V., et al., Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med, 2011. 364(2): p. 127-35. [doi:10.1056/NEJMoa1001689] [ [
DOI:10.1056/NEJMoa1001689] [
PMID] [
]
97. Bertière, M.C., et al., Low high density lipoprotein-2 concentrations in obese male subjects. Atherosclerosis, 1988. 73(1): p. 57-61. [doi:10.1016/0021-9150(88)90163-3] [ [
DOI:10.1016/0021-9150(88)90163-3] [
PMID]
98. Després, J.P., et al., Adipose tissue distribution and plasma lipoprotein levels in obese women. Importance of intra-abdominal fat. Arteriosclerosis, 1989. 9(2): p. 203-10. [doi:10.1161/01.ATV.9.2.203] [ [
DOI:10.1161/01.ATV.9.2.203] [
PMID]
99. Ostlund, R.E., Jr., et al., The ratio of waist-to-hip circumference, plasma insulin level, and glucose intolerance as independent predictors of the HDL2 cholesterol level in older adults. N Engl J Med, 1990. 322(4): p. 229-34. [doi:10.1056/NEJM199001253220404] [ [
DOI:10.1056/NEJM199001253220404] [
PMID]
100. Coon, P.J., et al., Effects of body composition and exercise capacity on glucose tolerance, insulin, and lipoprotein lipids in healthy older men: a cross-sectional and longitudinal intervention study. 1989. 38(12): p. 1201-1209. [
DOI:10.1016/0026-0495(89)90160-1] [
PMID]
101. Ratajczak, M., et al., Effects of Endurance and Endurance-Strength Training on Endothelial Function in Women with Obesity: A Randomized Trial. Int J Environ Res Public Health, 2019. 16(21). [
DOI:10.3390/ijerph16214291] [
PMID] [
]
102. Sgouraki, E., A. Tsopanakis, and C. Tsopanakis, Acute exercise: response of HDL-C, LDL-C lipoproteins and HDL-C subfractions levels in selected sport disciplines. J Sports Med Phys Fitness, 2001. 41(3): p. 386-91.
103. Stanton, K.M., et al., Moderate- and High-Intensity Exercise Improves Lipoprotein Profile and Cholesterol Efflux Capacity in Healthy Young Men. J Am Heart Assoc, 2022. 11(12): p. e023386. [
DOI:10.1161/JAHA.121.023386] [
PMID] [
]
104. Despres, J.P., et al., Loss of abdominal fat and metabolic response to exercise training in obese women. 1991. 261(2): p. E159-E167. [
DOI:10.1152/ajpendo.1991.261.2.E159] [
PMID]
105. Lamarche, B., et al., Is body fat loss a determinant factor in the improvement of carbohydrate and lipid metabolism following aerobic exercise training in obese women? 1992. 41(11): p. 1249-1256. [
DOI:10.1016/0026-0495(92)90017-5] [
PMID]
106. Manning, J.M., et al., Effects of a resistive training program on lipoprotein--lipid levels in obese women. 1991. 23(11): p. 1222-1226. [
DOI:10.1249/00005768-199111000-00003]
107. Nieman, D.C., et al., Reducing-diet and exercise-training effects on serum lipids and lipoproteins in mildly obese women. 1990. 52(4): p. 640-645. [
DOI:10.1093/ajcn/52.4.640] [
PMID]
108. Szmedra, L., et al., Exercise tolerance, body composition and blood lipids in obese African-American women following short-term training. 1998. 38(1): p. 59-65.
109. Wesnigk, J., et al., Impact of lifestyle intervention on HDL-induced eNOS activation and cholesterol efflux capacity in obese adolescent. 2016. 2016. [
DOI:10.1155/2016/2820432] [
PMID] [
]
110. Roberts, C.K., et al., Effect of a short-term diet and exercise intervention on inflammatory/anti-inflammatory properties of HDL in overweight/obese men with cardiovascular risk factors. 2006. [
DOI:10.1152/japplphysiol.00345.2006] [
PMID]
111. Park, S.-M., Y.-S. Kwak, and J.-G.J.J.o.i.r. Ji, The effects of combined exercise on health-related fitness, endotoxin, and immune function of postmenopausal women with abdominal obesity. 2015. 2015. [
DOI:10.1155/2015/830567] [
PMID] [
]
112. Nieman, D.C., et al., Reducing diet and/or exercise training decreases the lipid and lipoprotein risk factors of moderately obese women. 2002. 21(4): p. 344-350. [
DOI:10.1080/07315724.2002.10719233] [
PMID]
113. Nicklas, B.J., et al., Increases in high-density lipoprotein cholesterol with endurance exercise training are blunted in obese compared with lean men. 1997. 46(5): p. 556-561. [
DOI:10.1016/S0026-0495(97)90194-3] [
PMID]
114. Roh, H.-T., S.-Y. Cho, and W.-Y.J.J.o.c.m. So, A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. 2020. 9(3): p. 842. [
DOI:10.3390/jcm9030842] [
PMID] [
]
115. Puengsuwan, P., et al., Wand stretching exercise decreases abdominal obesity among adults with high body mass index without altering fat oxidation. 2020. 11. [
DOI:10.3389/fphys.2020.565573] [
PMID] [
]
116. Marcon, E.R., et al., What is the best treatment before bariatric surgery? Exercise, exercise and group therapy, or conventional waiting: a randomized controlled trial. 2017. 27(3): p. 763-773. [
DOI:10.1007/s11695-016-2365-z] [
PMID]
117. Marques, L.R., et al., Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol. Front Physiol, 2018. 9: p. 526. [doi:10.3389/fphys.2018.00526] [ [
DOI:10.3389/fphys.2018.00526] [
PMID] [
]
118. Leclerc, S., et al., High density lipoprotein cholesterol, habitual physical activity and physical fitness. Atherosclerosis, 1985. 57(1): p. 43-51. [doi:10.1016/0021-9150(85)90136-4] [ [
DOI:10.1016/0021-9150(85)90136-4] [
PMID]
119. Nieman, D.C., et al., Reducing diet and/or exercise training decreases the lipid and lipoprotein risk factors of moderately obese women. J Am Coll Nutr, 2002. 21(4): p. 344-50. [doi:10.1080/07315724.2002.10719233] [ [
DOI:10.1080/07315724.2002.10719233] [
PMID]
120. Mogharnasi, M., R. Eslami, and B. Behnam, Effects of endurance and circuit resistance trainings on lipid profile, heart rate, and hematological parameters in obese male students. Annals of Applied Sport Science, 2014. 2(4): p. 11-22. [doi:10.18869/acadpub.aassjournal.2.4.11] [
DOI:10.18869/acadpub.aassjournal.2.4.11]
121. Sigal, R.J., et al., Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Annals of internal medicine, 2007. 147(6): p. 357-369. [doi:10.7326/0003-4819-147-6-200709180-00005] [ [
DOI:10.7326/0003-4819-147-6-200709180-00005] [
PMID]
122. Azarbayjani, M.A., et al., Effects of combined aerobic and resistant training on lipid profile and glycemic control in sedentary men. Int Med J, 2014. 21(2): p. 132-136.
123. Roh, H.T., S.Y. Cho, and W.Y. So, A Cross-Sectional Study Evaluating the Effects of Resistance Exercise on Inflammation and Neurotrophic Factors in Elderly Women with Obesity. J Clin Med, 2020. 9(3). [doi:10.3390/jcm9030842] [ [
DOI:10.3390/jcm9030842] [
PMID] [
]
124. Al-Mhanna, S.B., et al., Effects of combined aerobic exercise and diet on cardiometabolic health in patients with obesity and type 2 diabetes: a systematic review and meta-analysis. BMC Sports Science, Medicine and Rehabilitation, 2023. 15(1): p. 165. [doi:10.1186/s13102-023-00766-5] [ [
DOI:10.1186/s13102-023-00766-5] [
PMID] [
]
125. Williams, P.T., et al., The effects of running mileage and duration on plasma lipoprotein levels. Jama, 1982. 247(19): p. 2674-9. [doi:10.1001/jama.1982.03320440022026] [ [
DOI:10.1001/jama.1982.03320440022026] [
PMID]
126. Stein, R.A., et al., Effects of different exercise training intensities on lipoprotein cholesterol fractions in healthy middle-aged men. Am Heart J, 1990. 119(2 Pt 1): p. 277-83. [doi:10.1016/S0002-8703(05)80017-1] [ [
DOI:10.1016/S0002-8703(05)80017-1] [
PMID]
127. Myhre, K., et al., Relationship of high density lipoprotein cholesterol concentration to the duration and intensity of endurance training. Scand J Clin Lab Invest, 1981. 41(3): p. 303-9. [doi:10.1080/00365518109092049] [ [
DOI:10.1080/00365518109092049] [
PMID]
128. Williams, P.T., Relationships of heart disease risk factors to exercise quantity and intensity. Arch Intern Med, 1998. 158(3): p. 237-45. [doi:10.1001/archinte.158.3.237] [ [
DOI:10.1001/archinte.158.3.237] [
PMID]