1. Aleskerov E, Freisleben B, Rao RB. CARDWATCH: a neural network based database mining system for credit card fraud detection. Proceedings of the IEEE/IAFE 1997 Computational Intel-ligence for Financial Engineering (CIFEr), 1997;220-226.
2. Kumar R. Risk factors in cost estimation: building contractors' experience. Am J Civ Eng. 2005; 6:123-128. [
DOI:10.12691/ajcea-6-3-5]
3. Spence C. Parra L, Sajda, P. Detection, Synthesis and Compression in Mammographic Image Analysis with a Hierarchical Image Probability Model. Proceedings IEEE Workshop on Mathe-matical Methods in Biomedical Image Analysis (MMBIA 2001), 2001;991693:3-10. [
DOI:10.1109/MMBIA.2001.991693]
4. Choi CH, Park JH. The possibility of detecting match-fixing: Benford's Law in sports data. Ko-rean J. Meas Eval Phys Educ Sport Sci. 2017;19:69-89. [
DOI:10.21797/ksme.2017.19.1.007]
5. Park SY, Yoon CC. The ethical sensitivity level of domestic badminton athletes for match-fixing. Sport Sci. 2021;39:395-402. [
DOI:10.46394/ISS.39.3.45]
6. Chang YC, Lee GH. A study on the cause analysis of sports ethical deviance. Korean J Sport Sci. 2016;25:15-29.
7. Park, JH, Choi CH, Cho E. Preliminary study to detect match-fixing: Benford's law in badminton rally data. J Phys Educ. 2016;3:64-77.
8. Duggan M, Levitt SD. Winning isn't everything: Corruption in sumo wrestling. Am Econ Rev. 2002;92:1594-1605. [
DOI:10.1257/000282802762024665]
9. Van RB. The odds of match fixing-Facts & figures on the integrity risk of certain sports bets. Available at SSRN 2015, 2555037.
10. Marchetti F, Reppold FAR, Constandt B. At risk: Betting-related match-fixing in Brazilian foot-ball. Crime Law Soc Change. 2021;76:431-450. [
DOI:10.1007/s10611-021-09971-0]
11. Ötting M, Langrock R, Deutscher C. Integrating multiple data sources in match-fixing warning systems. Stat Modelling. 2018;18:483-504 [
DOI:10.1177/1471082X18804933]
12. Park SK. Sports manipulation and criminal responsibility. J Sports Entertain L. 2011;14:217-242. [
DOI:10.19051/kasel.2011.14.3.217]
13. Fiore U, De Santis A, Perla F, Zanetti P, Palmieri F. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf Sci. 2019;479:448-455. [
DOI:10.1016/j.ins.2017.12.030]
14. Pumsirirat A, Liu Y. Credit card fraud detection using deep learning based on auto-encoder and restricted Holtzmann machine. Int J Adv Comput Sci Appl. 2018; 9. [
DOI:10.14569/IJACSA.2018.090103]
15. Roy A, Sun J, Mahoney R, Alonzi, L, Adams S, Beling P. Deep learning detecting fraud in credit card transactions. IEEE In 2018 Systems and Information Engineering Design Symposium (SIEDS) 2018:129-134. [
DOI:10.1109/SIEDS.2018.8374722]
16. Wang Y, Xu W. Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decis Support Syst. 2018;105:87-95. [
DOI:10.1016/j.dss.2017.11.001]
17. Sun L, Cao, B, Wang, J, Srisa-an, W, Philip SY, Leow AD, Checkoway S. Kollector: Detecting fraudulent activities on mobile devices using deep learning. IEEE Trans Mob Com-put. 2020;20:1465-1476. [
DOI:10.1109/TMC.2020.2964226]
18. Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25.
19. Igami, M. Artificial intelligence as structural estimation: Economic interpretations of Deep Blue, Bonanza, and AlphaGo 2018; 1710.10967.
20. Ha TY, Lee HJ. Presenting Direction for the Implementation of Personal Movement Trainer through Artificial Intelligence based Behavior Recognition. J of the Korea Convergence Society. 2019;10:235-242..
21. Park JY, KIM JS, Woo YT. A motion classification and retrieval system in baseball sports video using Convolutional Neural Network model. J of The Korea Society Computer And Information. 2021;26:31-37
22. Håkansson A, Jönsson, C, Kenttä G. Match-fixing causing harm to athletes on a COVID-19-influenced gambling market: a call for research during the pandemic and be-yond. Front Psychol. 2021;12:712300. URL: http://10.3389/fpsyg.2021.712300 [
DOI:10.3389/fpsyg.2021.712300] [
PMID] [
PMCID]
23. Hatfield O. Statistical methods for detecting match-fixing in tennis. Lancaster University (Unit-ed Kingdom). 2019. URL:https://www.proquest.com/openview/2c2082762909d6a81832dc309670c1d3/1?pq-origsite=gscholar&cbl=18750&diss=y