1. Liu X, Chen, J. Anomaly detection of JavaScript codes using one-class support vector machine and convolutional neural networks. Journal of Information Security and Applications, 2021;61, 102857.
2. Wang J, Li, D., Zhang, D. Li, W. A review of anomaly detection techniques in ERP systems. Journal of Systems and Software, 141, 2018;190-204.
3. Yang, S, Liu, Z, Huang, X, Wang, X. An improved fraud detection method for ERP systems based on one-class SVM and convolutional neural networks. Neural Computing and Applications, 2020; 32(17), 13797-13809.
4. Zhang Z., Li Y., Li X., Li G. Li B. The application of deep learning in ERP risk forecasting. Journal of Intelligent Manufacturing, 2021;32(3), 569-578.
5. Chen, Y., Ren, L., & Zhang, L. (2020). Anomaly detection of network traffic based on deep learning in ERP sys-tems. IEEE Access, 8, 100923-100934.
6. Zhang L., Chen X., Chen C. Fraud Detection in ERP Systems using One-Class SVM. IEEE Access, 2019;7, 108051-108059.
7. Zhang H., Jiang Y., Shi Y., Liu X. A Convolutional Neural Network Approach for Fraud Detection in ERP Systems. Future Generation Computer Systems, 2020;102, 778-786. [
DOI:10.1016/j.future.2019.09.012]
8. Zhang H., Jiang Y., Shi, Y. An Improved Fraud Detection Model in ERP Systems Based on One-Class SVM and Convolutional Neural Network. IEEE Access, 2021;9, 55870-55878. [
DOI:10.1109/ACCESS.2021.3063803]
9. Sun J, Zhang Y., Wang Z., Shen L. Fraud Detection in ERP Systems Based on Deep Belief Network. Journal of Computational Science, 2020;41, 101115.
10. Gupta, A. Singh, P. The role of ERP in financial accounting: A systematic review. Journal of Enterprise Information Management,2020; 33(3), 531-554.
11. Krishnan G., Yu, A.S. A comprehensive analysis of ERP adoption drivers, implications, and challenges. Journal of Information Systems, 2018;32(1), 101-121.
12. Damodaran L. Olafsson, S. Enterprise resource planning systems and financial reporting quality: The role of inter-nal controls. Journal of Information Systems, 2018;32(1), 55-75.
13. Cao M., Zhang Q. Duan Y. Big data analytics for fraud detection in accounting information systems. Journal of In-telligent & Fuzzy Systems, 2018;35(4), 4613-4625.
14. Ashar H. Hasan H. Understanding the challenges and opportunities in ERP data analytics for financial reporting. Journal of Accounting & Organizational Change, 2019;15(4), 606-625.
15. Ahmed T.A., Islam M.R., Hossain M.A. Hossain M.S. Malicious script detection in ERP using CNN and anomaly detection," IEEE Access, 2020;8,140682-140692.
16. Kumar P.V.P., Kumar P.R., Thangaraj R.C. Demand forecasting and anomaly detection in enterprise resource plan-ning systems using artificial neural network and cellular neural network," Journal of Intelligent Manufacturing, 2020, 31(3),-743-757.
17. Kumar V., Hillegersberg J.V. Enterprise resource planning systems and its implications for operations function. In-ternational Journal of Production Research, 2000;38(17), 4119-4135.
18. Gunasekaran A., Ngai E.W.T. Information systems in supply chain integration and management. European Journal of Operational Research, 2004;159(2), 269-295. [
DOI:10.1016/j.ejor.2003.08.016]
19. Yao X., Liu Y. A survey of artificial neural networks for ERP systems: Applications and challenges. Applied Soft Computing, 2015;26, 325-334.
20. Münstermann B., Eckstein J., Kabst R. The use of corporate talent management for succession planning in German medium-sized enterprises. Journal of Small Business Management, 2013;51(3), 443-465.
21. Zhang Y. Wu C. The effect of intelligent ERP systems on supply chain performance: An empirical study. Journal of Enterprise Information Management, 2018;31(5), 782-800.
22. LeCun Y., Bengio Y., Hinton G. Deep learning. Nature, 2015;521(7553), 436-444. [
DOI:10.1038/nature14539] [
PMID]
23. Goodfellow I., Bengio Y., Courville A. Deep learning. MIT Press; 2016.
24. Guo Y., Wang H. Convolutional neural networks for image processing: A deep learning approach. Journal of Visual Communication and Image Representation, 2017; 48, 436-449.
25. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:2014; 1409.1556.