year 12, Issue 1 (Spring 2024)                   Ann Appl Sport Sci 2024, 12(1): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vuk S, Pentek K, Damjan B. The Effect of Concurrent Ankle and Hip Positions on Hamstring Function in Athletes. Ann Appl Sport Sci 2024; 12 (1)
URL: http://aassjournal.com/article-1-1232-en.html
1- Laboratory for Motor Control and Performance, Department of Kinesiology of Sports, Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia. , sasa.vuk@kif.hr
2- Laboratory for Motor Control and Performance, Department of Kinesiology of Sports, Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia.
Abstract:   (1363 Views)
Background. Previous studies have suggested that ankle position and hip position can influence hamstring strength, but none have considered the influence of both joint positions at the same time.
Objectives. This study aimed to investigate the effect of ankle and hip position on peak torque (PT), normalized PT (NPT), angle of PT (APT), and surface electromyographic (SEMG) activity during isokinetic knee flexion.
Methods. In this within-subject study design, thirteen physically active men in a single session performed three maximal isokinetic unilateral knee flexion repetitions in four different ankle and hip positions: sitting with dorsal/plantar flexion and supine with dorsal/plantar flexion at two angular velocities of 60 and 180°/s on the isokinetic dynamometer. The individual SEMG activity of the gastrocnemius (GL), biceps femoris (BFl), and semitendinosus (ST) muscles was detected using a wireless SEMG system.
Results. Ankle and hip positions had a significant impact on the PT, NPT, and APT (p < 0.05), but did not affect SEMG activity of BFl, ST, and GL muscles for both angular velocities (p > 0.109). Specifically, the flexed hip and dorsiflexed ankle provided the greatest torque production, while the extended hip and plantarflexed ankle led to a decrease in hamstring torque production. An increase in angular velocity also led to an increase in APT.
Conclusion. Both hip and ankle positions have a significant impact on the PT, NPT, and APT, but not on BFl, ST, and GL activation during maximal knee flexion, for both angular velocities, 60 and 180°/s.
 
Full-Text [PDF 578 kb]   (785 Downloads)    
 
 
APPLICABLE REMARKS
  • The highest knee flexion torque can be produced in a flexed hip position with a dorsiflexed ankle, while the smallest torque is produced in a flexed hip position with a plantar flexed ankle.
  • The isolation of the hamstrings can be achieved by reducing the influence of the gastrocnemius by placing the ankle in a plantar flexion position.

Type of Study: Original Article | Subject: Sport Biomechanics and its related branches
Received: 2023/07/15 | Accepted: 2023/09/2

References
1. 1. Guruhan S, Kafa N, Ecemis ZB, Guzel NA. Muscle Activation Differences During Eccentric Hamstring Exercises. Sports Health. 2021 Mar 1;13(2):181-6. [DOI:10.1177/1941738120938649] [PMID] [PMCID]
2. Schoenfeld BJ. Squatting Kinematics and Kinetics and Their Application to Exercise Performance. J Strength Cond Res [Internet]. 2010 Dec;24(12):3497-506. [DOI:10.1519/JSC.0b013e3181bac2d7] [PMID]
3. Schoenfeld BJ, Contreras B, Tiryaki-Sonmez G, Wilson JM, Kolber MJ, Peterson MD. Regional Differences in Muscle Activation During Hamstrings Exercise. J Strength Cond Res [Internet]. 2015 Jan;29(1):159-64. [DOI:10.1519/JSC.0000000000000598] [PMID]
4. Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Bojsen-Møller F, Dyhre-Poulsen P. Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports [Internet]. 2000 Apr;10(2):58-67. [DOI:10.1034/j.1600-0838.2000.010002058.x] [PMID]
5. Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR, et al. Incidence and Trends of Anterior Cruciate Ligament Reconstruction in the United States. Am J Sports Med [Internet]. 2014 Oct 1;42(10):2363-70. [DOI:10.1177/0363546514542796] [PMID]
6. Hegyi A, Péter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand J Med Sci Sports [Internet]. 2018 Mar 1;28(3):992-1000. [DOI:10.1111/sms.13016] [PMID]
7. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the Preinjury Level of Competitive Sport After Anterior Cruciate Ligament Reconstruction Surgery. Am J Sports Med [Internet]. 2011 Mar 23;39(3):538-43. [DOI:10.1177/0363546510384798] [PMID]
8. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction. Am J Sports Med [Internet]. 2016 Jul 15;44(7):1861-76. [DOI:10.1177/0363546515621554] [PMID] [PMCID]
9. Pickering Rodriguez EC, Watsford ML, Bower RG, Murphy AJ. The relationship between lower body stiffness and injury incidence in female netballers. Sports Biomech [Internet]. 2017 Jul 3;16(3):361-73. [DOI:10.1080/14763141.2017.1319970] [PMID]
10. Serpell BG, Ball NB, Scarvell JM, Smith PN. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks. J Sports Sci [Internet]. 2012 Sep;30(13):1347-63. [DOI:10.1080/02640414.2012.710755] [PMID]
11. Holcomb WR. Is Neuromuscular Electrical Stimulation an Effective Alternative to Resistance Training? National Strength and Conditioning Association. 2005;27(3):76-9. [DOI:10.1519/00126548-200506000-00016]
12. Schoenfeld B. Accentuating Muscular Development Through Active Insufficiency and Passive Tension. Strength Cond J. 2002;24(4):20-2. [DOI:10.1519/00126548-200208000-00006]
13. Clarkson HM. Musculoskeletal Assessment: Joint Motion and Muscle Testing. Third Edition. Philadelphia: Lippincott Williams & Wilkins; 2013.
14. Tamaki H, Kitada K, Akamine T, Sakou T, Kurata H. Electromyogram patterns during plantarflexions at various angular velocities and knee angles in human triceps surae muscles. Eur J Appl Physiol [Internet]. 1996 Dec 1;75(1):1-6. [DOI:10.1007/s004210050118] [PMID]
15. Kellis E, Blazevich AJ. Hamstrings force-length relationships and their implications for angle-specific joint torques: a narrative review. BMC Sports Sci Med Rehabil [Internet]. 2022 Sep 5;14(1):166. [DOI:10.1186/s13102-022-00555-6] [PMID] [PMCID]
16. Miller JP, Catlaw K, Confessore R. Effect of Ankle Position on EMG Activity and Peak Torque of the Knee Extensors and Flexors during Isokinetic Testing. J Sport Rehabil [Internet]. 1997 Nov;6(4):335-42. [DOI:10.1123/jsr.6.4.335]
17. Deighan MA, Serpell BG, Bitcon MJ, De Ste Croix M. Knee Joint Strength Ratios and Effects of Hip Position in Rugby Players. J Strength Cond Res [Internet]. 2012 Jul;26(7):1959-66. [DOI:10.1519/JSC.0b013e318234eb46] [PMID]
18. Worrell TW, Perrin DH, Denegar CR. The Influence of Hip Position on Quadriceps and Hamstring Peak Torque and Reciprocal Muscle Group Ratio Values. Journal of Orthopaedic & Sports Physical Therapy [Internet]. 1989 Sep;11(3):104-7. [DOI:10.2519/jospt.1989.11.3.104] [PMID]
19. Janicijevic D, García-Ramos A, Knezevic OM, Mirkov DM. Feasibility of the two-point method for assessing the force-velocity relationship during lower-body and upper-body isokinetic tests. J Sports Sci [Internet]. 2019 Oct 18;37(20):2396-402. [DOI:10.1080/02640414.2019.1636523] [PMID]
20. Janicijevic D, Knezevic OM, Garcia-Ramos A, Cvetic D, Mirkov DM. Isokinetic Testing: Sensitivity of the Force-Velocity Relationship Assessed through the Two-Point Method to Discriminate between Muscle Groups and Participants' Physical Activity Levels. Int J Environ Res Public Health [Internet]. 2020 Nov 19;17(22):8570. [DOI:10.3390/ijerph17228570] [PMID] [PMCID]
21. Briggs KK, Steadman JR, Hay CJ, Hines SL. Lysholm Score and Tegner Activity Level in Individuals with Normal Knees. Am J Sports Med [Internet]. 2009 May 23;37(5):898-901. [DOI:10.1177/0363546508330149] [PMID]
22. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology [Internet]. 2000 Oct;10(5):361-74. [DOI:10.1016/S1050-6411(00)00027-4] [PMID]
23. Higashihara A, Ono T, Kubota J, Okuwaki T, Fukubayashi T. Functional differences in the activity of the hamstring muscles with increasing running speed. J Sports Sci [Internet]. 2010 Aug;28(10):1085-92. [DOI:10.1080/02640414.2010.494308] [PMID]
24. Onishi H, Yagi R, Oyama M, Akasaka K, Ihashi K, Handa Y. EMG-angle relationship of the hamstring muscles during maximum knee flexion. Journal of Electromyography and Kinesiology [Internet]. 2002 Oct;12(5):399-406. [DOI:10.1016/S1050-6411(02)00033-0] [PMID]
25. Kim K, Cha YJ, Fell DW. Differential effects of ankle position on isokinetic knee extensor and flexor strength gains during strength training. Isokinet Exerc Sci [Internet]. 2016 Aug 22;24(3):195-9. [DOI:10.3233/IES-160617]
26. Kim DH, Lee JH, Yu SM, An CM. The Effects of Ankle Position on Torque and Muscle Activity of the Knee Extensor During Maximal Isometric Contraction. J Sport Rehabil [Internet]. 2020 Jan 1;29(1):37-42. [DOI:10.1123/jsr.2018-0145] [PMID]
27. Bohannon RW, Gajdosik RL, LeVeau BF. Isokinetic Knee Flexion and Extension Torque in the Upright Sitting and Semireclined Sitting Positions. Phys Ther [Internet]. 1986 Jul 1;66(7):1083-6. [DOI:10.1093/ptj/66.7.1083] [PMID]
28. Zapparoli FY, Riberto M. Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review. J Sport Rehabil [Internet]. 2017 Nov 1;26(6):556-66. [DOI:10.1123/jsr.2016-0036] [PMID]
29. Croce R V, Miller JP, St Pierre P. Effect of Ankle Position Fixation on Peak Torque and Electromyographic Activity of the Knee Flexors and Extensors. Electromyogr Clin Neurophysiol. 2000;40(6):365-73.
30. McGraw Hill. Brunnstrom's Clinical Kinesiology, 6e [Internet]. Houglum PA, Bertoti DB, editors. 2012 [cited 2023 Jun 11].
31. Herrel A, Meyers JJ, Timmermans JP, Nishikawa KC. Supercontracting muscle: producing tension over extreme muscle lengths. Journal of Experimental Biology [Internet]. 2002 Aug 1;205(15):2167-73. [DOI:10.1242/jeb.205.15.2167] [PMID]
32. Mohamed O, Perry J, Hislop H. Relationship between wire EMG activity, muscle length, and torque of the hamstrings. Clinical Biomechanics [Internet]. 2002 Oct;17(8):569-79. [DOI:10.1016/S0268-0033(02)00070-0] [PMID]
33. Liu Y, Sun Y, Zhu W, Yu J. The late swing and early stance of sprinting are most hazardous for hamstring injuries. J Sport Health Sci [Internet]. 2017 Jun 1;6(2):133-6. [DOI:10.1016/j.jshs.2017.01.011] [PMID] [PMCID]
34. Chumanov ES, Schache AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med [Internet]. 2012 Feb;46(2):90-90. [DOI:10.1136/bjsports-2011-090176] [PMID]
35. Schache AG, Dorn TW, Blanch PD, Brown NAT, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sports Exerc [Internet]. 2012 Apr;44(4):647-58. [DOI:10.1249/MSS.0b013e318236a3d2] [PMID]
36. Bourne MN, Timmins RG, Opar DA, Pizzari T, Ruddy JD, Sims C, et al. An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury. Sports Medicine [Internet]. 2018 Feb 7;48(2):251-67. [DOI:10.1007/s40279-017-0796-x] [PMID]
37. Bourne MN, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med [Internet]. 2017 Jul 1;51(13):1021-8. [DOI:10.1136/bjsports-2015-095739] [PMID]
38. Kellis E, Baltzopoulos V. The effects of normalization method on antagonistic activity patterns during eccentric and concentric isokinetic knee extension and flexion. Journal of Electromyography and Kinesiology [Internet]. 1996 Dec;6(4):235-45. [DOI:10.1016/S1050-6411(96)00012-0] [PMID]
39. Ball N, Scurr J. Electromyography Normalization Methods for High-Velocity Muscle Actions: Review and Recommendations. J Appl Biomech [Internet]. 2013 Oct;29(5):600-8. [DOI:10.1123/jab.29.5.600] [PMID]
40. Ball N, Scurr J. An assessment of the reliability and standardisation of tests used to elicit reference muscular actions for electromyographical normalisation. Journal of Electromyography and Kinesiology [Internet]. 2010 Feb;20(1):81-8. [DOI:10.1016/j.jelekin.2008.09.004] [PMID]
41. Rouffet DM, Hautier CA. EMG normalization to study muscle activation in cycling. Journal of Electromyography and Kinesiology [Internet]. 2008 Oct;18(5):866-78. [DOI:10.1016/j.jelekin.2007.03.008] [PMID]
42. Oliver GD, Dougherty CP. The Razor Curl: A Functional Approach to Hamstring Training. J Strength Cond Res [Internet]. 2009 Mar;23(2):401-5. [DOI:10.1519/JSC.0b013e31818f08d0] [PMID]
43. Pincivero DM, Salfetnikov Y, Campy RM, Coelho AJ. Angle- and gender-specific quadriceps femoris muscle recruitment and knee extensor torque. J Biomech [Internet]. 2004 Nov;37(11):1689-97. [DOI:10.1016/j.jbiomech.2004.02.005] [PMID]
44. Barr AE, Goldsheyder D, Özkaya N, Nordin M. Testing apparatus and experimental procedure for position specific normalization of electromyographic measurements of distal upper extremity musculature. Clinical Biomechanics [Internet]. 2001 Aug;16(7):576-85. [DOI:10.1016/S0268-0033(01)00046-8] [PMID]
45. Kannus P. Isokinetic Evaluation of Muscular Performance. Int J Sports Med [Internet]. 1994 Jan 14;15(S 1):S11-8. [DOI:10.1055/s-2007-1021104] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb