Articles In Press / Online First                   Back to the articles list | Back to browse issues page


XML Print


1- Faculty of Hospitality, Tourism, and Wellness, Universiti Malaysia Kelantan City Kampus, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia. & Exercise and Sports Science Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
2- Exercise and Sports Science Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kelantan, Malaysia. , nursyamsina@usm.my
3- Exercise and Sports Science Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
4- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
5- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
Abstract:   (118 Views)
Background. Optimisation of bone health from exercise interventions and nutritional supplements was recommended.
Objectives. This study aimed to determine whether L-carnitine supplementation combined with interval exercise training influenced bone metabolism markers and muscular strength and power in individuals with overweight and obesity.
Methods. This randomized controlled trial study involved sixty-eight participants in four groups, i.e., control (C, n=17), L-carnitine supplementation alone (Lc, n=17), exercise alone (Ex, n=17) and combined L-carnitine supplement and exercise (LcEx, n=17) groups. The participants in Ex and LcEx groups participated in a 60-minute exercise program per day, 3 times a week, for 12 weeks at 50% heart rate reserved for brisk walking and 40-60% for interval exercise training. The participants in the Lc and LcEx groups consumed 1000 mg of L-carnitine supplement daily. The blood measurements for serum alkaline phosphatase (ALP), total calcium, and serum C-terminal telopeptide of type 1 procollagen (1CTP) were measured at weeks 0 and 12.
Results. The result showed that the LcEx group showed the most remarkable increment in ALP (p<0.05) and total calcium (p<0.05); however, it showed a reduction in serum 1CTP (p=0.003). Regarding muscular performance, the LcEx group (p<0.05) also demonstrated a more significant increase in overall measured parameters of dominant knee extension and flexion peak torque and average power at 60o.s-1 and 300o.s-1 compared to other groups after 12 weeks.
Conclusion. Combining L-carnitine supplementation with brisk walking and interval training can enhance bone formation and muscle performance in people with overweight and obesity
.
Full-Text [PDF 518 kb]   (25 Downloads)    
 
 
APPLICABLE REMARKS
  • Current study supports the importance of exercise and L-carnitine supplements in preventing bone loss, either by taking supplements alone, exercising alone, or combining both.
  • Interestingly, the combination of L-carnitine and exercise group expressed the highest peak torque and average power at 60o.s-1 and 300o.s-1.
  • Therefore, we claim that the active compound in the L carnitine supplement positively affects bone and muscular performance in combination with brisk walking and interval exercise training.

Type of Study: Original Article | Subject: Sport Physiology and its related branches
Received: 2024/08/6 | Accepted: 2024/10/31

References
1. 1. Robinson J, Nitschke E, Tovar A, Mattar L, Gottesman K, Hamlett P, Rozga M. Nutrition and physical activity interventions provided by nutrition and exercise practitioners for the general population: An evidence-based practice guideline from the Academy of Nutrition and Dietetics and American Council on Exercise. J Acad Nutr Diet. 2023;123(8):1215-1237. [DOI:10.1016/j.jand.2023.04.004] [PMID]
2. Karlsson MK, Rosengren BE. Exercise and Peak Bone Mass. Curr Osteoporos Rep. 2020;18(3):285-290. [DOI:10.1007/s11914-020-00588-1] [PMID] []
3. Cartledge TJ, Murphy J, Foster CE, Tibbitts B. The effect of weight-bearing exercise on the mechanisms of bone health in young females: A systematic review. J Frailty Sarcopenia Falls. 2022; 7(4):231-250. [DOI:10.22540/JFSF-07-231] [PMID] []
4. Simões D, Craveiro V, Santos MP, Camões M, Pires B, Ramos E. The effect of impact exercise on bone mineral density: A lon-gitudinal study on non-athlete adolescents. Bone. 2021; 153:116151. [DOI:10.1016/j.bone.2021.116151] [PMID]
5. Lanyon LE. Functional strain in bone tissue as an objective, and controlling stimulus for adaptive bone remodelling. J Biomech. 1987; 20(11-12):1083-93. [DOI:10.1016/0021-9290(87)90026-1] [PMID]
6. Szulc P, Bauer DC, Eastell R. Biochemical markers of bone turnover in osteoporosis. In Marcus and Feldman's Osteoporosis. Academic Press. 2021; 1545-1588. [DOI:10.1016/B978-0-12-813073-5.00065-4]
7. Burr DB. Bone morphology and organization. In Basic and applied bone biology. Academic Press. 2019; 3-26. [DOI:10.1016/B978-0-12-813259-3.00001-4]
8. Sushma BJ, Thiruveedhula CS. Brisk Walking and Lipid Profile in Obese Subjects. Int. J. Health Sci. 2022; (III):2555-61. [DOI:10.53730/ijhs.v6nS3.6086]
9. Watson KB, Frederick GM, Harris CD, Carlson SA, Fulton JE. US Adults' Participation in Specific Activities: Behavioral Risk Factor Surveillance System--2011. J Phys Act Health. 2015; 12 Suppl 1(01):S3-10. [DOI:10.1123/jpah.2013-0521] [PMID] []
10. Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996; 28(10):1327-30. [DOI:10.1097/00005768-199610000-00018] [PMID]
11. Lu M, Li M, Yi L, Li F, Feng L, Ji T, Zang Y, Qiu J. Effects of 8-week high-intensity interval training and moderate-intensity continuous training on bone metabolism in sedentary young females. J Exerc Sci Fit. 2022; 20(2):77-83. [DOI:10.1016/j.jesf.2022.01.001] [PMID] []
12. Carbone JW, Pasiakos SM. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients. 2019;11(5):1136. [DOI:10.3390/nu11051136] [PMID] []
13. Tomé D, Benoit S, Azzout-Marniche D. Protein metabolism and related body function: mechanistic approaches and health consequences. Proc Nutr Soc. 2021; 80(2):243-251. [DOI:10.1017/S0029665120007880] [PMID]
14. Lee BJ, Lin JS, Lin YC, Lin PT. Anti-inflammatory effects of L-carnitine supplementation (1000 mg/d) in coronary artery disease patients. Nutr J. 2014;31(3):475-479. [DOI:10.1016/j.nut.2014.10.001] [PMID]
15. Norsuriani S, Ooi FK. Bone health status, isokinetic muscular strength and power, and body composition of Malay adolescent female silat and taekwondo practitioners. Int. J. Public Health Clin. Sci. 2018; 5(2): 244-262.
16. Karvonen J, Vuorimaa T. Heart rate and exercise intensity during sports activities. Practical application. Sports Med. 1988; 5(5): 303-311. [DOI:10.2165/00007256-198805050-00002] [PMID]
17. Emberts T, Porcari J, Dobers-Tein S, Steffen J, Foster C. Exercise intensity and energy expenditure of a tabata workout. J Sports Sci Med. 2013;12(3):612-3.
18. Hamilton BR, Staines KA, Kelley GA, Kelley KS, Kohrt WM, Pitsiladis Y, Guppy FM. The Effects of Exercise on Bone Mineral Density in Men: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Calcif Tissue Int. 2022;110(1):41-56. [DOI:10.1007/s00223-021-00893-6] [PMID]
19. Carter MI, Hinton PS. Physical activity and bone health. Mo Med. 2014; 111(1):59-64.
20. Moreira LD, Fronza FC, Dos Santos RN, Zach PL, Kunii IS, Hayashi LF, Teixeira LR, Kruel LF, Castro ML. The benefits of a high-intensity aquatic exercise program (HydrOS) for bone metabolism and bone mass of postmenopausal women. J Bone Miner Metab. 2014; 32(4):411-9. [DOI:10.1007/s00774-013-0509-y] [PMID]
21. Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017; 17(3):114-139.
22. Mosavat M, Ooi FK, Mohamed M. Effects of honey supplementation combined with different jumping exercise intensities on bone mass, serum bone metabolism markers and gonadotropins in female rats. BMC Complement Altern Med. 2014; 14:126. [DOI:10.1186/1472-6882-14-126] [PMID] []
23. Alghadir AH, Gabr SA, Al-Eisa E. Physical activity and lifestyle effects on bone mineral density among young adults: socio-demographic and biochemical analysis. J Phys Ther Sci. 2015; 27(7):2261-70. [DOI:10.1589/jpts.27.2261] [PMID] []
24. Terruzzi I, Montesano A, Senesi P, Villa I, Ferraretto A, Bottani M, Vacante F, Spinello A, Bolamperti S, Luzi L, Rubinacci A. L-Carnitine reduces oxidative stress and promotes cells differentiation and bone matrix proteins expression in human osteoblast-like cells. Biomed Res Int. 2019; 2019:5678548. [DOI:10.1155/2019/5678548] [PMID] []
25. Dirckx N, Moorer MC, Clemens TL, Riddle RC. The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol. 2019; 15(11):651-665. [DOI:10.1038/s41574-019-0246-y] [PMID] []
26. Shen L, Hu G, Karner CM. Bioenergetic Metabolism In Osteoblast Differentiation. Curr Osteoporos Rep. 2022 Feb;20(1):53-64. [DOI:10.1007/s11914-022-00721-2] [PMID] []
27. Ooi FK, Singh R, Singh HJ. Changes in bone turnover markers and bone mass with reducing levels of jumping exercise regimens in female rats. Asian J Sports Med. 2012; 3(4):225-32. [DOI:10.5812/asjsm.34541]
28. Dolan E, Dumas A, Keane KM, Bestetti G, Freitas LHM, Gualano B, Kohrt W, Kelley GA, Pereira RMR, Sale C, Swinton P. The influence of acute exercise on bone biomarkers: protocol for a systematic review with meta-analysis. Syst Rev. 2020; 9(1):291. [DOI:10.1186/s13643-020-01551-y] [PMID] []
29. Ferraretto A, Bottani M, Villa I, Giusto L, Signo M, Senesi P, Montesano A, Vacante F, Luzi L, Rubinacci A, Terruzzi I. L-Carnitine activates calcium signaling in human osteoblasts. J. Funct. Foods. 2018; 47:270-8. [DOI:10.1016/j.jff.2018.05.068]
30. Jones MA, Smith RL, Carter HP. The regulation of calcium homeostasis in response to physical activity and aging: A review of physiological mechanisms. J. Bone Miner. Res. 2021; 36(2): 245-256.
31. Rondanelli M, Faliva MA, Monteferrario F, Perna S, Antoniello N, Peroni G. Nutritional strategies in preserving bone health. Int. J. Environ. Res. Public Health. 2020; 17(21): 7997.
32. Kanis JA, McCloskey EV, Harvey NC, Johansson H, Leslie WD, Reginster JY. Intervention thresholds and the diagnosis of osteoporosis. Bone. 2020; 134: 115293.
33. Mangels AR, Messina V, Messina M, Melina V. Bone health and plant-based diets: Impact of dietary calcium, vitamin D, and protein on bone mineral density and fracture risk. Nutrients. 2019; 11(1): 1-14.
34. Goncalves A, Gentil P, Steele J, Giessing J, Paoli A, Fisher JP. Comparison of single- and multi-joint lower body resistance training upon strength increases in recreationally active males and females: a within-participant unilateral training study. Eur J Transl Myol. 2019; 29(1):8052. [DOI:10.4081/ejtm.2019.8052] [PMID] []
35. Schmidt D, Anderson K, Graff M, Strutz V. The effect of high-intensity circuit training on physical fitness. J Sports Med Phys Fitness. 2016; 56(5):534-40.
36. Kumar, V. Effect of circuit training program on selected motor abilities among university male. Int. J. Phys. Educ. Sports Health. 2016; 3: 255-257.
37. Krzysztofik M, Wilk M, Wojdała G, Gołaś A. Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. Int J Environ Res Public Health. 2019; 16(24):4897. [DOI:10.3390/ijerph16244897] [PMID] []
38. Lorenz D, Morrison S. Current concepts in periodization of strength and conditioning for the sports physical therapist. Int J Sports Phys Ther. 2015; 10(6):734-47.
39. Grgic J, Schoenfeld BJ, Davies TB, Lazinica B, Krieger JW, Pedisic Z. Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med. 2018; 48(5):1207-1220. [DOI:10.1007/s40279-018-0872-x] [PMID]
40. Schoenfeld BJ, Ogborn D, Krieger JW. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2016; 46(11):1689-1697. [DOI:10.1007/s40279-016-0543-8] [PMID]
41. Schoenfeld BJ, Ogborn DI, Krieger JW. Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2015; 45(4):577-85. [DOI:10.1007/s40279-015-0304-0] [PMID]
42. Iversen VM, Norum M, Schoenfeld BJ, Fimland MS. No Time to Lift? Designing Time-Efficient Training Programs for Strength and Hypertrophy: A Narrative Review. Sports Med. 2021; 51(10):2079-2095. [DOI:10.1007/s40279-021-01490-1] [PMID] []
43. Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol. 2023; 24(9):607-632. [DOI:10.1038/s41580-023-00606-x] [PMID] []
44. Hedayatpour N, Falla D. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. Biomed Res Int. 2015; 2015:193741. [DOI:10.1155/2015/193741] [PMID] []
45. Weinert DJ. Nutrition and muscle protein synthesis: A descriptive review. Journal of the Canadian Chiropractic Association. 2009; 53(3): 186-193.

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb