Articles In Press / Online First                   Back to the articles list | Back to browse issues page


XML Print


1- Gaziantep University, Department of Physical Education and Sport, Gaziantep, Turkey.
2- Gaziantep University, Faculty of Sports Science, Department of Physical Education and Sports Gaziantep, Turkey. , z_pancar@hotmail.com
3- Gaziantep University, Department of Medical Biochemistry, Gaziantep, Turkey.
4- Hasan Kalyoncu University, Faculty of Health Sciences, Gaziantep, Turkey.
5- Victoria University, Insitute for Health and Sport, Melbourne, Australia.
Abstract:   (25 Views)
Background. Curcumin supports metabolism with its antioxidant and anti-inflammatory effects. It is particularly effective in reducing metabolic stress caused by prolonged exercise.
Objectives. This study aimed to investigate the impact of curcumin supplementation on Irisin, Nesfatin-1, and Leptin hormone levels in rats undergoing prolonged treadmill exercise.
Methods. A total of 32 male Wistar-Albino rats were divided randomly into four equal groups: The control group (n=8), the curcumin group (n=8), the treadmill group (n=8), and the curcumin+treadmill group. The experiment lasted eight weeks, with one week of treadmill acclimatization. No intervention was applied to the control group. Curcumin was given at 200 mg/kg, and treadmill exercise was performed for 30 min at 45 cm/s, three days weekly. The Curcumin+Treadmill group was fed 200 mg/kg/day and performed three days a week for 30 minutes at an average speed of 45 cm/s. After the study, rats were euthanized, and blood samples were collected for analysis. Irisin, nesfatin-1, and leptin hormone levels were determined using the ELISA method.
Results. Our study showed a significant increase in irisin levels in both the curcumin and exercise groups compared to the control group. For nesfatin-1, levels were significantly decreased in the curcumin group compared to the control, while they were significantly increased in the curcumin+exercise group. Leptin levels were the highest in the exercise group, showing a significant increase compared to the control group (p<0.05). In contrast, the leptin levels in the curcumin group were significantly lower than those in the exercise group.
Conclusion. This study demonstrates that combining curcumin supplementation and exercise positively affects irisin, nesfatin-1, and leptin hormone levels, contributing to metabolic balance.
Full-Text [PDF 361 kb]   (11 Downloads)    
 
 
APPLICABLE REMARKS
  • The study shows that combining curcumin supplementation and exercise supports metabolic balance by positively affecting irisin and nesfatin-1 levels.
  • Curcumin may accelerate recovery and maintain hormonal balance by reducing exercise-induced oxidative stress, significantly benefiting exercise performance.
  • These findings suggest that curcumin may effectively support metabolic health when combined with exercise and may contribute to developing new therapeutic strategies.

Type of Study: Original Article | Subject: Sport Physiology and its related branches
Received: 2024/10/7 | Accepted: 2024/12/13

References
1. 1. Mullaicharam AR, Maheswaran A. Pharmacological effects of curcumin. Int J Nutr Pharmacol Neurol Dis. 2012;2(2):92-99. [DOI:10.4103/2231-0738.95930]
2. Fan CD, Li Y, Fu XT, Wu QJ, Hou YJ, Yang MF, Sun JY, Fu X, Zheng Z, Sun BL. Reversal of beta-amyloid-induced neurotoxicity in PC12 cells by curcumin: The important role of ROS-mediated signaling and ERK pathway. Cell Mol Neurobiol. 2017;37(2):211-22. [DOI:10.1007/s10571-016-0362-3] [PMID]
3. Morales I, Cerda-Troncoso C, Andrade V, Maccioni RB. The natural product curcumin as a potential coadjuvant in Alzheimer's treatment. J Alzheimers Dis. 2017;60(2):451-460. [DOI:10.3233/JAD-170354] [PMID]
4. Rivera-Mancía S, Lozada-García MC, Pedraza-Chaverri J. Experimental evidence for curcumin and its analogs for management of diabetes mellitus and its associated complications. Eur J Pharmacol. 2015;756:30-37. [DOI:10.1016/j.ejphar.2015.02.045] [PMID]
5. Drobnic F, Riera J, Appendino G, Togni S, Franceschi F, Valle X, Pons A, Tur J. Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): A randomized, placebo-controlled trial. J Int Soc Sports Nutr. 2014;11(1):31. [DOI:10.1186/1550-2783-11-31] [PMID] []
6. Finaud J, Lac G, Filaire E. Oxidative stress. Sports Med. 2006;36(4):327-58. [DOI:10.2165/00007256-200636040-00004] [PMID]
7. Takahashi M, Suzuki K, Kim H, Otsuka Y, Imaizumi A, Miyashita M, Sakamoto S. Effects of curcumin supplementation on exercise-induced oxidative stress in humans. Int J Sports Med. 2013;35(6):469-475. [DOI:10.1055/s-0033-1357185] [PMID]
8. Tanabe Y, Maeda S, Akazawa N, Zempo-Miyaki A, Choi YS, Ra SG, Imaizumi A, Otsuka Y, Nosaka K. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Physiol. 2015;115(9):1949-1957. [DOI:10.1007/s00421-015-3170-4] [PMID] []
9. Rico H, Gervas J, Hernandez ER, Seco C, Villa LE, Revilla M, Sanchez-Atrio A. Effects of alprazolam supplementation on vertebral and femoral bone mass in rats on strenuous treadmill training exercise. Calcif Tissue Int. 1999;65(2):139-142. [DOI:10.1007/s002239900672] [PMID]
10. Pancar Z, Çınar V, Akbulut T, Kuloğlu T, Şahin İ, Aydın S. Irisin, Angtpl8, Elabela and antioxidants alteration in rats with and without energy drink and treadmill exercise. Eur Rev Med Pharmacol Sci. 2022;26:4044-4053.
11. Avcu EC, Çınar V, Yasul Y, Akbulut T, Pancar Z, Aydemir İ, Aydın S, et al. Effects of an energy drink on myonectin in the liver, kidney and skeletal muscle of exercised rats. Biotechnic Histochem. 2024;99(2):69-75. [DOI:10.1080/10520295.2024.2305113] [PMID]
12. Arıkan Ş, Akın G. İrisin ve egzersiz. Türk Spor Bilimleri Dergisi. 2019;2(2):106-114.
13. Timmons JA, Baar K, Davidsen PK, Atherton PJ. Is irisin a human exercise gene? Nature. 2012;488(10). [DOI:10.1038/nature11364] [PMID]
14. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-468. [DOI:10.1038/nature10777] [PMID] []
15. Aydın S, Kuloğlu T, Aydın S, Yılmaz M, Kalaycı M, Çiçek D, Şahin İ. Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects, before and after 45 min of a Turkish bath or running. Peptides. 2013;50:13-18. [DOI:10.1016/j.peptides.2013.09.011] [PMID]
16. Chen N, Li Q, Liu J, Jia S. Irisin, an exercise-induced myokine as a metabolic regulator: An updated narrative review. Diabetes Metab Res Rev. 2016;32:51-59. [DOI:10.1002/dmrr.2660] [PMID]
17. Zheng J, Cheng J, Zheng S, Feng Q, Xiao X. Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front Pharmacol. 2018;9:472. [DOI:10.3389/fphar.2018.00472] [PMID] []
18. Bulboacă AE, Porfire AS, Tefas LR, Boarescu PM, Bolboacă SD, Stănescu IC, et al. Protective effects of liposomal curcumin on oxidative stress/antioxidant imbalance, metalloproteinases 2 and -9, histological changes, and renal function in experimental nephrotoxicity induced by gentamicin. Antioxidants (Basel). 2021;10(2):325. [DOI:10.3390/antiox10020325] [PMID] []
19. Rashid K, Chowdhury S, Ghosh S, Sil PC. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem Pharmacol. 2017;143:140-155. [DOI:10.1016/j.bcp.2017.07.009] [PMID]
20. Gonzalez R, Perry RLS, Gao X, Gaidhu M, Ceddia RB, Tsushima RG, Unniappan S. Nutrient responsive nesfatin-1 regulates energy balance and induces glucose-stimulated insulin secretion in rats. Endocrinology. 2011;152(10):3628-3637. [DOI:10.1210/en.2010-1471] [PMID]
21. Stengel A. Nesfatin-1: More than a food intake regulatory peptide. Peptides. 2015;72:175-183. [DOI:10.1016/j.peptides.2015.06.002] [PMID]
22. Goebel M, Stengel A, Wang L, et al. Central nesfatin-1 reduces the nocturnal food intake in mice by reducing meal size and increasing inter-meal intervals. Peptides. 2011;32:36-43. [DOI:10.1016/j.peptides.2010.09.027] [PMID] []
23. Gotoh K, Masaki T, Chiba S, et al. Nesfatin-1, corticotropin-releasing hormone, thyrotropin-releasing hormone, and neuronal histamine interact in the hypothalamus to regulate feeding behavior. J Neurochem. 2013;124:90-99. [DOI:10.1111/jnc.12066] [PMID]
24. Dore R, Krotenko K, Reising JP, Murru L, Sundaram SM, Spiezio A. Nesfatin-1 decreases the motivational and rewarding value of food. Neuropsychopharmacology. 2020;45:1645-1655. [DOI:10.1038/s41386-020-0682-3] [PMID] []
25. Guvenc G, Altınbas B, Kasikci E, Ozyurt E, Bas A, et al. Contingent role of phoenixin and nesfatin-1 on secretions of the male reproductive hormones. 2019;51(11):1-7. [DOI:10.1111/and.13410] [PMID]
26. Weltman A, Pritzlaff CJ, Wideman L, Considine RV, Fryburg DA, Gutgesell ME, Hartman ML, Veldhuis JD. Intensity of acute exercise does not affect serum leptin concentrations in young men. Med Sci Sports Exerc. 2000;32(9):1556-1561. [DOI:10.1097/00005768-200009000-00005] [PMID]
27. Zoladz JA, Konturek SJ, Duda K, Majerczak J, Sliwowsski Z, Grandys M, Bielanski W. Effect of moderate incremental exercise, performed in fed and fasted state, on cardio-respiratory variables and leptin and ghrelin concentrations in young healthy men. J Physiol Pharmacol. 2005;56(1):63-85.
28. Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc. 1953;140(901):578-592. [DOI:10.1098/rspb.1953.0009] [PMID]
29. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269(5223):540-543. [DOI:10.1126/science.7624776] [PMID]
30. Breslow MJ, Min-Lee K, Brown DR, Chacko VP, Palmer D, Berkowitz DE. Effect of leptin deficiency on metabolic rate in ob/ob mice. Am J Physiol Endocrinol Metab. 1999;276(3):443-449. [DOI:10.1152/ajpendo.1999.276.3.E443] [PMID]
31. Kyriazis GA, Kaplan JD, Lowndes J, Marangoz RL, Dennis KE, Sivo SA, Angelopoulos TJ. Moderate exercise-induced energy expenditure does not alter leptin levels in sedentary obese men. Clin J Sport Med. 2007;17(1):49-51. [DOI:10.1097/JSM.0b013e31802e9c38] [PMID]
32. Pasman WJ, Westerterp-Plantenga MS, Saris WHM. The effect of exercise training on leptin levels in obese males. Am J Physiol Endocrinol Metab. 1998;274(2):280-286. [DOI:10.1152/ajpendo.1998.274.2.E280] [PMID]
33. Murakami T, Horigome H, Tanaka K, Nakata Y, Katayama Y, Matsui A. Effects of diet with or without exercise on leptin and anticoagulation proteins levels in obesity. Blood Coagul Fibrinolysis. 2007;18(5):389-394. [DOI:10.1097/01.mbc.0000278929.87251.5d] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb