Articles In Press / Online First                   Back to the articles list | Back to browse issues page


XML Print


Sport Sciences Department, Faculty of Sport Sciences, Arab American University, Jenin, P.O Box 240 Jenin, 13 Zababdeh, Palestine. , samer.abueid@aaup.edu
Abstract:   (27 Views)
Background. Type 2 Diabetes (T2D) is a prevalent global health issue requiring effective management strategies. Exercise plays a key role in improving insulin sensitivity and aerobic capacity. This study examines the impact of Blood-Flow Restriction (BFR) Walk Training on these parameters in T2D patients, hypothesizing that BFR may offer greater benefits than conventional exercise.
Objectives. 
To evaluate the effects of BFR Walk Training on insulin sensitivity, aerobic capacity, and body composition in male patients with T2D.
Methods.
A randomized controlled trial was conducted with 60 male T2D patients aged 40 to 65. Participants were randomly assigned to a BFR Walk Training or conventional exercise group. The intervention lasted for eight weeks, during which the BFR group performed low-intensity walking combined with limb blood-flow restriction while the control group followed standard walking exercises. Pre- and post-intervention assessments included Body Mass Index (BMI), maximal oxygen consumption (VO2max), and fasting blood glucose levels.
Results.
The BFR group showed significant improvements, including a 4.10% reduction in BMI, a 7.96% decrease in fasting glucose levels, and a 26.1% increase in VO2max, all with p-values <0.001 compared to the control group.
Conclusion.
BFR Walk Training significantly enhances insulin sensitivity, aerobic capacity, and body composition in T2D patients, offering a novel and effective exercise strategy for diabetes management.
Full-Text [PDF 390 kb]   (12 Downloads)    
 
 
APPLICABLE REMARKS
  • This study indicates that BFR Walk Training could be an effective, low-intensity exercise alternative for managing T2D, particularly for patients who struggle with high-intensity workouts.
  • Recommended Protocol: T2D patients may benefit from low-intensity BFR Walk Training with cuffs set to 50% LOP, effectively enhancing insulin sensitivity and aerobic capacity.
  • Monitoring and Safety: Patient safety can be maintained by monitoring blood pressure and exertion levels during BFR sessions, especially for beginners.
  • Patient Education: Educating patients on BFR benefits, safe cuff use, and expected outcomes, such as improved glycemic control, can enhance adherence and engagement.
  • Expected Outcomes: Clinicians may observe improved glycemic control and aerobic fitness over 8 weeks, though adjustments in intensity and frequency may be needed to meet individual patient responses.

Type of Study: Original Article | Subject: Sport Physiology and its related branches
Received: 2024/10/3 | Accepted: 2024/12/15

References
1. 1. Safiri S, Karamzad N, Kaufman JS, Bell AW, Nejadghaderi SA, Sullman MJM, et al. Prevalence, deaths, and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the Global Burden of Disease Study 2019. Front Endocrinol (Lausanne). 2022;13:838027. [DOI:10.3389/fendo.2022.838027] [PMID] []
2. World Health Organization. Diabetes [Internet]. 2023 Apr 5 [cited 2024 Oct 18]. Available from: https://www.who.int/health-topics/diabetes#tab=tab_1.
3. Ong KL, Stafford LK, McLaughlin SA, GBD 2021 Diabetes Collaborators, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-234. [DOI:10.1016/S0140-6736(23)01301-6] [PMID]
4. Centers for Disease Control and Prevention. National Diabetes Statistics Report [Internet]. 2023 [cited 2024 Oct 18]. Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html.
5. Liu J, Bai R, Chai Z, Cooper ME, Zimmet PZ, Zhang L. Low- and middle-income countries demonstrate rapid growth of type 2 diabetes: An analysis based on Global Burden of Disease data. Diabetologia. 2022;65(8):1339-1352. [DOI:10.1007/s00125-022-05713-6] [PMID] []
6. Kelkar A, Kelkar J, Mehta H, Amoaku W. Cataract surgery in diabetes mellitus: A systematic review. Indian J Ophthalmol. 2018;66(10):1401-1410. [DOI:10.4103/ijo.IJO_1158_17] [PMID] []
7. Montt D, Onetto MT, Sánchez R. Individualized visual narratives: Type 1 diabetes management strategies among three runners in the London Marathon. InfoDesign - Rev Bras Des Inf. 2023;20(2). [DOI:10.51358/id.v20i2.1111]
8. Oyebode O, Orji R. MediNER: Understanding diabetes management strategies based on social media discourse. In: 2021 IEEE Intl Conf Parallel & Distributed Process Appl, Big Data Cloud Comput, Sustain Comput Commun, Soc Comput Netw (ISPA/BDCloud/SocialCom/SustainCom). IEEE. 2021;1546-1553. [DOI:10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00208]
9. Nguyen TN, Vu HTT, Khuong LQ, Van Der Ploeg I, Sundberg CJ. Positive effects of physical activity on prescription on glycemic control, fitness, and quality of life in newly diagnosed type 2 diabetic patients. Horm Metab Res. 2023;55(9):617-624. [DOI:10.1055/a-2144-7236] [PMID]
10. Ma Y, Liu H, Wang Y, Zhang Z, Sun W. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr. 2022;14:169. [DOI:10.1186/s13098-022-00942-6] [PMID] []
11. Zhang Y, Liu C, Xu Y, Guo M, Li J. The management correlation between metabolic index, cardiovascular health, and diabetes combined with cardiovascular disease. Front Endocrinol (Lausanne). 2023;13:1036146. [DOI:10.3389/fendo.2022.1036146] [PMID] []
12. Angelopoulos P, Tsekoura M, Mylonas K, Vagenas A, Sakellari V, Billis E. The effectiveness of blood flow restriction training in cardiovascular disease patients: A scoping review. J Frailty Sarcopenia Falls. 2023;8(2):107-117. [DOI:10.22540/JFSF-08-107] [PMID] []
13. Rodrigues AW da S, Martins ABA, Albuquerque Filho NJB de, Souza RP de, Tibana RA. Strength exercises with blood flow restriction promote hypotensive and hypoglycemic effects in women with type 2 diabetes: Randomized crossover study. Health Nexus. 2023;1(1):32-39. [DOI:10.61838/hn.1.1.6]
14. Sverchkov VV, Bykov EV. Low-intensity resistance training with blood flow restriction improves metabolic parameters in men with metabolic syndrome. J Med Biol Res. 2023;3:310-320. [DOI:10.37482/2687-1491-Z149]
15. de Deus LA, Corrêa HL, Neves RVP, Leite RD, Deus HFD. Metabolic and hormonal responses to chronic blood-flow restricted resistance training in chronic kidney disease: A randomized trial. Appl Physiol Nutr Metab. 2022;47(2):183-194. [DOI:10.1139/apnm-2021-0409] [PMID]
16. Cuschieri S. The CONSORT statement. Saudi J Anaesth. 2019;13(5). [DOI:10.4103/sja.SJA_559_18] [PMID] []
17. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. BMJ. 2016;355. [DOI:10.1136/bmj.i5239] [PMID] []
18. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713-721. [DOI:10.1093/ptj/83.8.713] [PMID]
19. McClary KN, Massey P. Ankle brachial index. In: StatPearls. StatPearls Publishing; 2023. Available from: https://pubmed.ncbi.nlm.nih.gov/31334946/.
20. Criqui MH, McClelland RL, McDermott MM, Allison MA, Blumenthal RS, Aboyans V, et al. The ankle-brachial index and incident cardiovascular events in the MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2010;56(18):1506-1512. [DOI:10.1016/j.jacc.2010.04.060] [PMID] []
21. American Thoracic Society, American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-277. [DOI:10.1164/rccm.167.2.211] [PMID]
22. Sartor F, Vernillo G, De Morree HM, Bonomi AG, La Torre A, Kubis HP. Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports Med. 2013;43(9):865-873. [DOI:10.1007/s40279-013-0068-3] [PMID]
23. Ebbeling CB, Ward A, Puleo EM, Widrick J, Rippe JM. Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc. 1991;23(8):966-973. [DOI:10.1249/00005768-199108000-00014] [PMID]
24. Lin JD. Levels of the first-phase insulin secretion deficiency as a predictor for type 2 diabetes onset by using clinical-metabolic models. Ann Saudi Med. 2015;35(2):138-145. [DOI:10.5144/0256-4947.2015.138] [PMID] []
25. Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016;11:95-104. [DOI:10.4137/BMI.S38440] [PMID] []
26. Nascimento DC, Rolnick N, Neto IVS, Severin R, Beal FLR. A useful blood flow restriction training risk stratification for exercise and rehabilitation. Front Physiol. 2022;13:808622. [DOI:10.3389/fphys.2022.808622] [PMID] []
27. Jones MT, Aguiar EJ, Winchester LJ. Proposed mechanisms of blood flow restriction exercise for the improvement of type 1 diabetes pathologies. Diabetology. 2021;2(4):176-189. [DOI:10.3390/diabetology2040016]
28. Maga M, Wachsmann-Maga A, Batko K, Markowski M, Wilk M, Krzysztofik M. Impact of blood-flow-restricted training on arterial functions and angiogenesis-A systematic review with meta-analysis. Biomedicines. 2023;11(6):1601. [DOI:10.3390/biomedicines11061601] [PMID] []
29. Saatmann N, Zaharia OP, Loenneke JP, Roden M, Pesta DH. Effects of blood flow restriction exercise and possible applications in type 2 diabetes. Trends Endocrinol Metab. 2021;32(2):106-117. [DOI:10.1016/j.tem.2020.11.010] [PMID]
30. Pereira-Neto EA, Lewthwaite H, Boyle T, Johnston K, Bennett H, Williams MT. Effects of exercise training with blood flow restriction on vascular function in adults: A systematic review and meta-analysis. PeerJ. 2021;7. [DOI:10.7717/peerj.11554] [PMID] []
31. Batrakoulis A, Jamurtas AZ, Fatouros IG. Exercise and type II diabetes mellitus: A brief guide for exercise professionals. Strength Cond J. 2022;44(6):64-72. [DOI:10.1519/SSC.0000000000000731]
32. Pedrosa A, Furtado G, de Barros MP, et al. The impact of moderate-to-high-intensity exercise protocols on glycated hemoglobin levels in type 2 diabetes patients. Diabetology. 2023;4(1):11-18. [DOI:10.3390/diabetology4010002]
33. Syeda USA, Battillo D, Visaria A, Malin SK. The importance of exercise for glycemic control in type 2 diabetes. Am J Med Open. 2023;9:100031. [DOI:10.1016/j.ajmo.2023.100031] [PMID] []
34. Harrington D, Henson J. Physical activity and exercise in the management of type 2 diabetes: Where to start? Pract Diabetes. 2021;38(5):35-40b. [DOI:10.1002/pdi.2361]
35. Gao S, Tang J, Yi G, Wei Y, Sun Y, Lin J, et al. The therapeutic effects of mild to moderate intensity aerobic exercise on glycemic control in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. Diabetes Ther. 2021;12(10):2767-2781. [DOI:10.1007/s13300-021-01149-0] [PMID] []
36. Bennetsen SL, Feineis CS, Legaard GEP, Lyngbæk MP, Karstoft K, Ried-Larsen M. The impact of physical activity on glycemic variability assessed by continuous glucose monitoring in patients with type 2 diabetes mellitus: A systematic review. Front Endocrinol (Lausanne). 2020;11:486. [DOI:10.3389/fendo.2020.00486] [PMID] []
37. Peng Y, Ou Y, Wang K, Wang Z, Zheng X. The effect of low volume high-intensity interval training on metabolic and cardiorespiratory outcomes in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023;13:1098325. [DOI:10.3389/fendo.2022.1098325] [PMID] []

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb