year 5, Issue 4 (Winter 2017)                   Ann Appl Sport Sci 2017, 5(4): 39-47 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Modaberi S, Shahbazi M, Naghdi N, Bagherzadeh A. The Effects of Mild Forced Treadmill Exercise and GABA-B Agonist on Locomotor Activity and Anxiety-Behavior in Rats with Striatum Dysfunction. Ann Appl Sport Sci 2017; 5 (4) :39-47
URL: http://aassjournal.com/article-1-469-en.html
1- Department of Motor Learning, Faculty of Sport Sciences, University of Tehran, Tehran, Iran
2- Department of Motor Learning, Faculty of Sport Sciences, University of Tehran, Tehran, Iran , shahbazimehdi@ut.ac.ir
3- Pasture Institute, Tehran, Iran
Abstract:   (7651 Views)
Background. the basal ganglia’s circuit dysfunction has a major role in a range of movement disorders. Some evidence has shown that exercise can improve performance, especially locomotor activity after brain injuries. There was currently insufficient information to define the impacts of intensity, duration, and frequency of different exercises.
Objectives. in this study, we examine the role of mild forced treadmill exercise and GABA-B agonist on locomotor activity and anxiety-behavior dysfunction of ibotenic acid injection in striatum.
Methods. forty male Wistar rats were randomly split into five groups. The animals received ibotenic acid infusions into striatum bilaterally. Locomotor activities of rats were assessed by open-field apparatus.
Results. Our results showed that mild forced treadmill exercise and GABA-B could significantly increase distance in open field and decrease anxiety-behavior in treadmill and drug groups than lesion group (P=0.008 and P=0.001 respectively).
Conclusion. There is no significant difference between treadmill and drug groups. So, mild forced treadmill exercise and baclofen could improve motor dysfunction of lesion by ibotenic acid injection in striatum and anxiety-behavior.
Full-Text [PDF 598 kb]   (1795 Downloads)    
 
 
APPLICABLE REMARKS
• Combination of exercise and drug could improve motor function and stress behavior in animal models with brain impairment.

Type of Study: Original Article | Subject: Exercise, Training and Health
Received: 2016/12/25 | Accepted: 2017/05/28

References
1. Romanelli P, Esposito V, Schaal DW, Heit G. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain research reviews. 2005;48(1):112-28. [DOI:10.1016/j.brainresrev.2004.09.008] [PMID]
2. Mink JW. Basal ganglia motor function in relation to Hallervorden-Spatz syndrome. Pediatric neurology. 2001;25(2):112-7. [DOI:10.1016/S0887-8994(01)00270-3]
3. Ilinsky I, Jouandet M, Goldman‐Rakic P. Organization of the nigrothalamocortical system in the rhesus monkey. Journal of Comparative Neurology. 1985;236(3):315-30. [DOI:10.1002/cne.902360304] [PMID]
4. Penney J, Young A. Speculations on the functional anatomy of basal ganglia disorders. Annual review of neuroscience. 1983;6(1):73-94. [DOI:10.1146/annurev.ne.06.030183.000445] [PMID]
5. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Progress in neurobiology. 1996;50(4):381-425. [DOI:10.1016/S0301-0082(96)00042-1]
6. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends in neurosciences. 1989;12(10):366-75. [DOI:10.1016/0166-2236(89)90074-X]
7. Dunnett SB, Iversen SD. Sensorimotor impairments following localized kainic acid and 6-hydroxydopamine lesions of the neostriatum. Brain research. 1982;248(1):121-7. [DOI:10.1016/0006-8993(82)91153-2]
8. Montoya C, Astell S, Dunnett S. Effects of nigral and striatal grafts on skilled forelimb use in the rat. Progress in brain research. 1990;82:459-66. [DOI:10.1016/S0079-6123(08)62634-5]
9. Pisa M. Motor functions of the striatum in the rat: critical role of the lateral region in tongue and forelimb reaching. Neuroscience. 1988;24(2):453-63. [DOI:10.1016/0306-4522(88)90341-7]
10. Pisa M, Schranz JA. Dissociable motor roles of the rat's striatum conform to a somatotopic model. Behavioral neuroscience. 1988;102(3):429. [DOI:10.1037/0735-7044.102.3.429] [PMID]
11. Divac I, Markowitsch HJ, Pritzel M. Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain research. 1978;151(3):523-32. [DOI:10.1016/0006-8993(78)91084-3]
12. Reading PJ, Dunnett SB, Robbins TW. Dissociable roles of the ventral, medial and lateral striatum on the acquisition and performance of a complex visual stimulus-response habit. Behavioural brain research. 1991;45(2):147-61. [DOI:10.1016/S0166-4328(05)80080-4]
13. Galvan A, Hu X, Smith Y, Wichmann T. Localization and pharmacological modulation of GABA-B receptors in the globus pallidus of parkinsonian monkeys. Experimental neurology. 2011;229(2):429-39. [DOI:10.1016/j.expneurol.2011.03.010] [PMID] [PMCID]
14. Chen L, Chan S, Yung W. Rotational behavior and electrophysiological effects induced by GABA B receptor activation in rat globus pallidus. Neuroscience. 2002;114(2):417-25. [DOI:10.1016/S0306-4522(02)00299-3]
15. Tillerson J, Caudle W, Reveron M, Miller G. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience. 2003;119(3):899-911. [DOI:10.1016/S0306-4522(03)00096-4]
16. Allen NE, Sherrington C, Paul SS, Canning CG. Balance and falls in Parkinson's disease: A meta‐analysis of the effect of exercise and motor training. Movement disorders. 2011;26(9):1605-15. [DOI:10.1002/mds.23790] [PMID]
17. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. The effects of exercise on cognition in Parkinson's disease: a systematic review. Translational neurodegeneration. 2014;3(1):1. [DOI:10.1186/2047-9158-3-5] [PMID] [PMCID]
18. Paillard T, Rolland Y, de Souto Barreto P. Protective effects of physical exercise in Alzheimer's disease and Parkinson's disease: a narrative review. Journal of clinical neurology. 2015;11(3):212-9. [DOI:10.3988/jcn.2015.11.3.212] [PMID] [PMCID]
19. Garcia PC, Real CC, Ferreira AF, Alouche SR, Britto LR, Pires RS. Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain research. 2012;1456:36-48. [DOI:10.1016/j.brainres.2012.03.059] [PMID]
20. Aguiar AS, Araújo AL, da-Cunha TR, Speck AE, Ignácio ZM, De-Mello N, et al. Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain research bulletin. 2009;79(6):452-7. [DOI:10.1016/j.brainresbull.2009.05.005] [PMID]
21. Dishman RK, Berthoud HR, Booth FW, Cotman CW, Edgerton VR, Fleshner MR, et al. Neurobiology of exercise. Obesity. 2006;14(3):345-56. [DOI:10.1038/oby.2006.46] [PMID]
22. Etnier JL, Nowell PM, Landers DM, Sibley BA. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain research reviews. 2006;52(1):119-30. [DOI:10.1016/j.brainresrev.2006.01.002] [PMID]
23. Cotman CW, Engesser-Cesar C. Exercise enhances and protects brain function. Exercise and sport sciences reviews. 2002;30(2):75-9. [DOI:10.1097/00003677-200204000-00006] [PMID]
24. Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. Neuron glia biology. 2004;1(04):351-63. [DOI:10.1017/S1740925X05000219] [PMID] [PMCID]
25. Stackman RW, Walsh TJ. Baclofen produces dose-related working memory impairments after intraseptal injection. Behavioral and neural biology. 1994;61(2):181-5. [DOI:10.1016/S0163-1047(05)80073-1]
26. Sandyk R, Gillman M. Baclofen-induced memory impairment. Clinical neuropharmacology. 1985;8(3):294-5. [DOI:10.1097/00002826-198509000-00011] [PMID]
27. Nourjah P., Rostami P., BarzegarM.H. a. The role of GABA- B receptors of NBM in learning
28. McNamara RK, Skelton RW. Baclofen, a selective GABA B receptor agonist, dose-dependently impairs spatial learning in rats. Pharmacology Biochemistry and Behavior. 1996;53(2):303-8. [DOI:10.1016/0091-3057(95)02025-X]
29. Zeman A, Hoefeijzers S, Milton F, Dewar M, Carr M, Streatfield C. The GABA B receptor agonist, baclofen, contributes to three distinct varieties of amnesia in the human brain–A detailed case report. Cortex. 2016;74:9-19. [DOI:10.1016/j.cortex.2015.10.005] [PMID]
30. Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. Journal of neuroscience methods. 2004;3(2):129-49. [DOI:10.1016/0165-0270(80)90021-7]
31. Walsh RN, Cummins RA. The open-field test: A critical review. Psychological bulletin. 1976;83(3):482. [DOI:10.1037/0033-2909.83.3.482]
32. Tarsy D, Vitek JL, Lozano AM. Surgical treatment of Parkinson's disease and other movement disorders: Springer Science & Business Media; 2002. [DOI:10.1385/1592593127] [PMCID]
33. Whishaw I, Zeeb F, Erickson C, McDonald R. Neurotoxic lesions of the caudate-putamen on a reaching for food task in the rat: acute sensorimotor neglect and chronic qualitative motor impairment follow lateral lesions and improved success follows medial lesions. Neuroscience. 2007;146(1):86-97. [DOI:10.1016/j.neuroscience.2007.01.034] [PMID]
34. Costa C, Sgobio C, Siliquini S, Tozzi A, Tantucci M, Ghiglieri V, et al. Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson's disease. Brain. 2012:aws101. [DOI:10.1093/brain/aws101] [PMID]
35. Block F, Kunkel M, Schwarz M. Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats. Neuroscience letters. 1993;149(2):126-8. [DOI:10.1016/0304-3940(93)90752-7]
36. Cheatwood J, Corwin J, Reep R. Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain research. 2005;1036(1):90-100. [DOI:10.1016/j.brainres.2004.12.049] [PMID]
37. Cheatwood J, Reep R, Corwin J. The associative striatum: cortical and thalamic projections to the dorsocentral striatum in rats. Brain research. 2003;968(1):1-14. [DOI:10.1016/S0006-8993(02)04212-9]
38. Gabrieli JD, Stebbins GT, Singh J, Willingham DB, Goetz CG. Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington's disease: evidence for dissociable memory systems in skill learning. Neuropsychology. 1997;11(2):272. [DOI:10.1037/0894-4105.11.2.272] [PMID]
39. Ang E-T, Dawe GS, Wong PT, Moochhala S, Ng Y-K. Alterations in spatial learning and memory after forced exercise. Brain research. 2006;1113(1):186-93. [DOI:10.1016/j.brainres.2006.07.023] [PMID]
40. Mariotti R, Fattoretti P, Malatesta M, Nicolato E, Sandri M, Zancanaro C. Forced mild physical training improves blood volume in the motor and hippocampal cortex of old mice. The journal of nutrition, health & aging. 2014;18(2):178-83. [DOI:10.1007/s12603-013-0384-1] [PMID]
41. Marques MR, Stigger F, Segabinazi E, Augustin OA, Barbosa S, Piazza FV, et al. Beneficial effects of early environmental enrichment on motor development and spinal cord plasticity in a rat model of cerebral palsy. Behavioural brain research. 2014;263:149-57. [DOI:10.1016/j.bbr.2014.01.007] [PMID]
42. Döbrössy MD, Dunnett SB. Motor training effects on recovery of function after striatal lesions and striatal grafts. Experimental neurology. 2003;184(1):274-84. [DOI:10.1016/S0014-4886(03)00028-1]
43. Hoveida R, Alaei H, Oryan S, Parivar K, Reisi P. Treadmill running improves spatial memory in an animal model of Alzheimer's disease. Behavioural brain research. 2011;216(1):270-4. [DOI:10.1016/j.bbr.2010.08.003] [PMID]
44. Kim S-H, Kim H-B, Jang M-H, Lim B-V, Kim Y-J, Kim Y-P, et al. Treadmill exercise increases cell proliferation without altering of apoptosis in dentate gyrus of Sprague-Dawley rats. Life sciences. 2002;71(11):1331-40. [DOI:10.1016/S0024-3205(02)01849-0]
45. Burghardt PR, Fulk LJ, Hand GA, Wilson MA. The effects of chronic treadmill and wheel running on behavior in rats. Brain research. 2004;1019(1):84-96. [DOI:10.1016/j.brainres.2004.05.086] [PMID]
46. García-Capdevila S, Portell-Cortés I, Torras-Garcia M, Coll-Andreu M, Costa-Miserachs D. Effects of long-term voluntary exercise on learning and memory processes: dependency of the task and level of exercise. Behavioural brain research. 2009;202(2):162-70. [DOI:10.1016/j.bbr.2009.03.020] [PMID]
47. Pietrelli A, Lopez-Costa J, Goni R, Brusco A, Basso N. Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience. 2012;202:252-66. [DOI:10.1016/j.neuroscience.2011.11.054] [PMID]
48. Mink J, Thach W. Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. Journal of neurophysiology. 1991;65(2):330-51. [DOI:10.1152/jn.1991.65.2.330] [PMID]
49. Slow EJ, Van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Human molecular genetics. 2003;12(13):1555-67. [DOI:10.1093/hmg/ddg169] [PMID]
50. Kim W, Seo H. Baclofen, a GABA B receptor agonist, enhances ubiquitin-proteasome system functioning and neuronal survival in Huntington's disease model mice. Biochemical and biophysical research communications. 2014;443(2):706-11. [DOI:10.1016/j.bbrc.2013.12.034] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb