1. Wallace LG, Sheetz SD. The adoption of software measures: A technology acceptance model (TAM) perspective. Information & Management. 2014;51(2):249-59. [
DOI:10.1016/j.im.2013.12.003]
2. Davis FD. User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International journal of man-machine studies. 1993;38(3):475-87. [
DOI:10.1006/imms.1993.1022]
3. Lee Y-C. An empirical investigation into factors influencing the adoption of an e-learning system. Online Information Review. 2006;30(5):517-41. [
DOI:10.1108/14684520610706406]
4. Bagozzi RP. The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the association for information systems. 2007;8(4):3. [
DOI:10.17705/1jais.00122]
5. Lu Y, Zhou T, Wang B. Exploring Chinese users' acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory. Computers in Human Behavior. 2009;25(1):29-39. [
DOI:10.1016/j.chb.2008.06.002]
6. Chang S-H, Chou C-H, Yang J-M, editors. The Literature Review of Technology Acceptance Model: A Study of the Bibliometric Distributions. PACIS; 2010.
7. Sánchez-Prieto JC, Olmos-Miguelá-ez S, García-Pe-alvo FJ. Informal tools in formal contexts: Development of a model to assess the acceptance of mobile technologies among teachers. Computers in Human Behavior. 2016;55:519-28. [
DOI:10.1016/j.chb.2015.07.002]
8. Huijts NM, Molin E, Steg L. Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renewable and Sustainable Energy Reviews. 2012;16(1):525-31. [
DOI:10.1016/j.rser.2011.08.018]
9. Holden H, Rada R. Understanding the influence of perceived usability and technology self-efficacy on teachers' technology acceptance. Journal of Research on Technology in Education. 2011;43(4):343-67. [
DOI:10.1080/15391523.2011.10782576]
10. Davis FD, Bagozzi RP, Warshaw PR. User acceptance of computer technology: a comparison of two theoretical models. Management science. 1989;35(8):982-1003. [
DOI:10.1287/mnsc.35.8.982]
11. Surendran P. Technology acceptance model: A survey of literature. International Journal of Business and Social Research. 2012;2(4):175-8.
12. Leonard LN, Cronan TP, Kreie J. What influences IT ethical behavior intentions—planned behavior, reasoned action, perceived importance, or individual characteristics? Information & Management. 2004;42(1):143-58. [
DOI:10.1016/j.im.2003.12.008]
13. Gumussoy C, Calisir F, Bayram A, editors. Understanding the behavioral intention to use ERP systems: An extended technology acceptance model. 2007 IEEE International Conference on Industrial Engineering and Engineering Management; 2007: IEEE. [
DOI:10.1109/IEEM.2007.4419547]
14. Guritno S, Siringoringo H. Perceived usefulness, ease of use, and attitude towards online shopping usefulness towards online airlines ticket purchase. Procedia-Social and Behavioral Sciences. 2013;81:212-6. [
DOI:10.1016/j.sbspro.2013.06.415]
15. Park E, Baek S, Ohm J, Chang HJ. Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telematics and Informatics. 2014;31(1):3-15. [
DOI:10.1016/j.tele.2013.07.001]
16. Ratten V. A cross-cultural comparison of online behavioural advertising knowledge, online privacy concerns and social networking using the technology acceptance model and social cognitive theory. Journal of Science & Technology Policy Management. 2015;6(1):25-36. [
DOI:10.1108/JSTPM-06-2014-0029]
17. Hsiao C-H, Tang K-Y. Investigating factors affecting the acceptance of self-service technology in libraries: The moderating effect of gender. Library Hi Tech. 2015;33(1):114-33. [
DOI:10.1108/LHT-09-2014-0087]
18. Erasmus E, Rothmann S, Van Eeden C. A structural model of technology acceptance. SA Journal of Industrial Psychology. 2015;41(1):01-12. [
DOI:10.4102/sajip.v41i1.1222]
19. Venkatesh V, Davis FD. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science. 2000;46(2):186-204. [
DOI:10.1287/mnsc.46.2.186.11926]
20. Saadé RG, Kira D. The emotional state of technology acceptance. Issues in informing science and information technology. 2006;3:529-39. [
DOI:10.28945/913]
21. Chang PV-C. The validity of an extended technology acceptance model (TAM) for predicting intranet/portal usage. 2004.
22. Bandura A. Self-efficacy: toward a unifying theory of behavioral change. Psychological review. 1977;84(2):191. [
DOI:10.1037/0033-295X.84.2.191] [
PMID]
23. Pauli KP, Gilson RL, May DR. Anxiety and avoidance: The mediating effects of computer self-efficacy on computer anxiety and intention to use computers. Review of Business Information Systems (RBIS). 2011;11(1):57-64. [
DOI:10.19030/rbis.v11i1.4431]
24. Ramayah T, Aafaqi B, Ignatius J. Role of self-efficacy in e-library usage among students of a public university in Malaysia. Malaysian Journal of Library and Information Science. 2004;9:39-58.
25. Kripanont N. Using a technology acceptance model to investigate academic acceptance of the internet. Journal of Business Systems, Governance, and Ethics. 2006;1(2):13-28. [
DOI:10.15209/jbsge.v1i2.72]
26. Saadé RG, Kira D. Computer anxiety in e-learning: The effect of computer self-efficacy. Journal of Information Technology Education. 2009;8(1):177-91. [
DOI:10.28945/166]
27. Alenezi AR, Karim AMA, Veloo A. An empirical investigation into the role of enjoyment, computer anxiety, computer self-efficacy and internet experience in influencing the students' intention to use e-learning: A case study from Saudi Arabian governmental universities. TOJET: The Turkish Online Journal of Educational Technology. 2010;9(4).
28. Compeau D, Higgins CA, Huff S. Social cognitive theory and individual reactions to computing technology: A longitudinal study. MIS quarterly. 1999:145-58. [
DOI:10.2307/249749]
29. Abubakar D, Adetimirin A. INFLUENCE OF COMPUTER LITERACY ON POSTGRADUATES'USE OF E-RESOURCES IN NIGERIAN UNIVERSITY LIBRARIES. Library Philosophy and Practice. 2015:1.
30. Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and intrinsic motivation to use computers in the workplace1. Journal of applied social psychology. 1992;22(14):1111-32. [
DOI:10.1111/j.1559-1816.1992.tb00945.x]
31. Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS quarterly. 2003:425-78. [
DOI:10.2307/30036540]
32. Mun YY, Hwang Y. Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-Computer Studies. 2003;59(4):431-49. [
DOI:10.1016/S1071-5819(03)00114-9]
33. Teo T, Noyes J. An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education. 2011;57(2):1645-53. [
DOI:10.1016/j.compedu.2011.03.002]
34. Venkatesh V, Speier C, Morris MG. User acceptance enablers in individual decision making about technology: Toward an integrated model. Decision Sciences. 2002;33(2):297-316. [
DOI:10.1111/j.1540-5915.2002.tb01646.x]
35. Nah FF-H, Zhao F, Zhu W. Factors influencing users' adoption of mobile computing. Managing E-Commerce and Mobile Computing Technologies Book. 2003:260-71.
36. Bandura A. Self-efficacy mechanism in human agency. American psychologist. 1982;37(2):122. [
DOI:10.1037/0003-066X.37.2.122]
37. Doll WJ, Torkzadeh G. The measurement of end-user computing satisfaction. MIS quarterly. 1988:259-74. [
DOI:10.2307/248851]
38. Seddon P, Kiew M-Y. A partial test and development of DeLone and McLean's model of IS success. Australasian Journal of Information Systems. 1996;4(1). [
DOI:10.3127/ajis.v4i1.379]
39. Negash S, Ryan T, Igbaria M. Quality and effectiveness in web-based customer support systems. Information & Management. 2003;40(8):757-68. [
DOI:10.1016/S0378-7206(02)00101-5]
40. Yoon Y, Guimaraes T, O'Neal Q. Exploring the factors associated with expert systems success. MIS quarterly. 1995:83-106. [
DOI:10.2307/249712]
41. Delone WH, McLean ER. The DeLone and McLean model of information systems success: a ten-year update. Journal of management information systems. 2003;19(4):9-30. [
DOI:10.1080/07421222.2003.11045748]
42. Mathieson K. Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research. 1991;2(3):173-91. [
DOI:10.1287/isre.2.3.173]
43. Bhattacherjee A. An empirical analysis of the antecedents of electronic commerce service continuance. Decision support systems. 2001;32(2):201-14. [
DOI:10.1016/S0167-9236(01)00111-7]
44. Cenfetelli R, Benbasat I, Al-Natour S. Information technology mediated customer service: A functional perspective. ICIS 2005 Proceedings. 2005:58.
45. Konradt U, Christophersen T, Schaeffer-Kuelz U. Predicting user satisfaction, strain and system usage of employee self-services. International Journal of Human-Computer Studies. 2006;64(11):1141-53. [
DOI:10.1016/j.ijhcs.2006.07.001]
46. Kim Y, Lee HS. Quality, perceived usefulness, user satisfaction, and intention to use: An empirical study of ubiquitous personal robot service. Asian Social Science. 2014;10(11):1. [
DOI:10.5539/ass.v10n11p1]
47. Chen L, Gillenson L, Sherrell L. Enticing online consumers: an extended technology acceptance perspective, 39 (8), 709–719. doi: 10.1016. S0378-7206 (01). 2002:00127-6.
48. Gefen D, Karahanna E, Straub DW. Trust and TAM in online shopping: an integrated model. MIS quarterly. 2003;27(1):51-90. [
DOI:10.2307/30036519]
49. Wu J-H, Wang S-C. What drives mobile commerce?: An empirical evaluation of the revised technology acceptance model. Information & Management. 2005;42(5):719-29. [
DOI:10.1016/j.im.2004.07.001]
50. Hsu C-L, Lu H-P. Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management. 2004;41(7):853-68. [
DOI:10.1016/j.im.2003.08.014]
51. Yang Z, Cai S, Zhou Z, Zhou N. Development and validation of an instrument to measure user perceived service quality of information presenting web portals. Information & Management. 2005;42(4):575-89. [
DOI:10.1016/S0378-7206(04)00073-4]
52. Persico D, Manca S, Pozzi F. Adapting the Technology Acceptance Model to evaluate the innovative potential of e-learning systems. Computers in Human Behavior. 2014;30:614-22. [
DOI:10.1016/j.chb.2013.07.045]
53. Stantchev V, Colomo-Palacios R, Soto-Acosta P, Misra S. Learning management systems and cloud file hosting services: A study on students' acceptance. Computers in Human Behavior. 2014;31:612-9. [
DOI:10.1016/j.chb.2013.07.002]
54. Sánchez RA, Hueros AD. Motivational factors that influence the acceptance of Moodle using TAM. Computers in Human Behavior. 2010;26(6):1632-40. [
DOI:10.1016/j.chb.2010.06.011]
55. Malhotra Y, Galletta DF, editors. Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. Systems sciences, 1999 HICSS-32 Proceedings of the 32nd annual Hawaii international conference on; 1999: IEEE.
56. Yi-Cheng C, Yi-Chien LV, Ron-Chuen Y. Examining factors influencing behavioral intentions to use asynchronous web-based language learning. PACIS 2006 Proceedings. 2006:65.
57. Kline RB. Principles and practice of structural equation modeling: Guilford publications; 2015.
58. Hu Lt, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal. 1999;6(1):1-55. [
DOI:10.1080/10705519909540118]
59. Tang K-Y. Investigating factors affecting the acceptance of self-service technology in libraries. Library Hi Tech. 2015;33(1):114-33. [
DOI:10.1108/LHT-09-2014-0087]
60. Taylor S, Todd PA. Understanding information technology usage: A test of competing models. Information systems research. 1995;6(2):144-76. [
DOI:10.1287/isre.6.2.144]
61. Koufaris M. Applying the technology acceptance model and flow theory to online consumer behavior. Information systems research. 2002;13(2):205-23. [
DOI:10.1287/isre.13.2.205.83]
62. Lee W, Xiong L, Hu C. The effect of Facebook users' arousal and valence on intention to go to the festival: Applying an extension of the technology acceptance model. International Journal of Hospitality Management. 2012;31(3):819-27. [
DOI:10.1016/j.ijhm.2011.09.018]
63. Lee KC, Chung N. Understanding factors affecting trust in and satisfaction with mobile banking in Korea: A modified DeLone and McLean's model perspective. Interacting with computers. 2009;21(5-6):385-92. [
DOI:10.1016/j.intcom.2009.06.004]
64. Park E, Del Pobil AP. Modeling the user acceptance of long-term evolution (LTE) services. annals of telecommunications-annales des télécommunications. 2013;68(5-6):307-15.
65. Jeong HI, Kim Y. The acceptance of computer technology by teachers in early childhood education. Interactive Learning Environments. 2016:1-17.
66. McFarland DJ. The Role of Age and Efficacy on Technology Acceptance: Implications for E-Learning. 2001.
67. Lopez DA, Manson DP. A study of individual computer self-efficacy and perceived usefulness of the empowered desktop information system. 1997.
68. Rezaei M, Mohammadi HM, Asadi A, Kalantary K. Predicting e-learning application in agricultural higher education using technology acceptance model. Turkish Online Journal of Distance Education. 2008;9(1).
69. Liaw S-S, Chang W-C, Hung W-H, Huang H-M. Attitudes toward search engines as a learning assisted tool: approach of Liaw and Huang's research model. Computers in Human Behavior. 2006;22(2):177-90. [
DOI:10.1016/j.chb.2004.09.003]
70. ahmadi dehghotbi m, moshkani m, mohammad khani A. The Impact of Computer Self-efficacy and Anxiety on the Structures of Davis' TAM. The New Prospects of Social Psychology. 2010;13(1):51- 71.
71. Teo T. Modelling technology acceptance in education: A study of pre-service teachers. Computers & Education. 2009;52(2):302-12. [
DOI:10.1016/j.compedu.2008.08.006]
72. Sun H, Zhang P. Applying markus and Robey's causal structure to examine user technology acceptance research: a new approach. JITTA: Journal of Information Technology Theory and Application. 2006;8(2):21.
73. Olmos Miguelá-ez S, García-Pe-alvo FJ, Sánchez Prieto JC. Informal Tools in Formal Contexts: Development of a Model to Assess the Acceptance of Mobile Technologies among Teachers. 2016.
74. Al-Debei MM. The quality and acceptance of websites: an empirical investigation in the context of higher education. International Journal of Business Information Systems. 2014;15(2):170-88. [
DOI:10.1504/IJBIS.2014.059252]
75. Adetimirin A. An Empirical Study of Online Discussion Forums by Library and Information Science Postgraduate Students using Technology Acceptance Model 3. Journal of Information Technology Education: Research. 2015;14:257-69. [
DOI:10.28945/2269]
76. Ifinedo P. Acceptance and continuance intention of web-based learning technologies (WLT) use among university students in a Baltic country. The Electronic Journal of Information Systems in Developing Countries. 2006;23. [
DOI:10.1002/j.1681-4835.2006.tb00151.x]
77. Hadji B, Degoulet P. Information system end-user satisfaction and continuance intention: A unified modeling approach. Journal of biomedical informatics. 2016;61:185-93. [
DOI:10.1016/j.jbi.2016.03.021] [
PMID]
78. Kang YS, Lee H. Understanding the role of an IT artifact in online service continuance: An extended perspective of user satisfaction. Computers in Human Behavior. 2010;26(3):353-64. [
DOI:10.1016/j.chb.2009.11.006]
79. Mohammadi H. Investigating users' perspectives on e-learning: an integration of TAM and IS success model. Computers in Human Behavior. 2015;45:359-74. [
DOI:10.1016/j.chb.2014.07.044]
80. Ofori KS, Larbi-Siaw O, Fianu E, Gladjah RE, Boateng EOY. Factors Influencing the Continuance Use of Mobile Social Media: The Effect of Privacy Concerns. Journal of Cyber Security.4:105-24.
81. Lee H, Kim J, Kim J. Determinants of success for application service provider: An empirical test in small businesses. International Journal of Human-Computer Studies. 2007;65(9):796-815. [
DOI:10.1016/j.ijhcs.2007.04.004]