year 10, Issue 2 (Summer 2022)                   Ann Appl Sport Sci 2022, 10(2): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Candrawati S, Huriyati E, Sofro Z M, Rujito L, Hidayah C, Hayuningtyas D A et al . The Effect of UCP2 45bp Insersi/Delesi Genetic Variation on the Body Composition of Woman with Obesity in Continuous Training and High-Intensity Interval Training: A Randomized Controlled Trial Study. Ann Appl Sport Sci. 2022; 10 (2)
URL: http://aassjournal.com/article-1-1021-en.html
1- Doctoral Study Program, Faculty of Medicine Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia , susiana.candrawati@mail.ugm.ac.id
2- Department of Health Nutrition, Faculty of Medicine Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
3- Department of Molecular Biology, Medical Faculty, Jenderal Soedirman University, Purwokerto, Indonesia
4- College Student Medical Faculty, Jenderal Soedirman University, Purwokerto, Indonesia
Abstract:   (1435 Views)
Background. Continuous Training (CT) is often considered an effective way to reduce obesity. However, recently, a popular protocol called High-Intensity Interval Training (HIIT) has shown up as an alternative to CT. There is another factor affecting obesity named UCP2 45-bp Insersion/Deletion genetic marker.
Objectives. This research aims to determine the effect of the UCP2 45-bp I/D gene as a genetic marker in response to obese training (CT and HIIT).
Methods. This study was a randomized controlled trial (RCT) in two cycling training groups (CT and HIIT). The purposive sampling method was used to collect 28 women with obesity (BMI≥25 kg/m2). Random allocation into two groups using the block randomization method. Exercise training interventions were conducted for 12 weeks, with a frequency of 3 times per week.
Results. Body composition data (body weight, BMI, and Body Fat Percentage) before and after the intervention were analyzed with the Dependent T-Test and found that both the CT and HIIT groups had significant improvements in body composition (P<0.05). ANCOVA Test analyzed the effect of training type and UCP2 45-bp I/D variance on body composition. There was no effect of training type and genetic variation on body weight improvement (P=0.145), body mass index improvement (P=0.153), and body fat improvement (P=0.159).
Conclusion. Both Continuous and High-Intensity Interval Training can equally improve the body composition of obese patients. There was no UCP2 45-bp I/D variance effect on the response to training in a woman with obesity.
Full-Text [PDF 276 kb]   (561 Downloads)    
 
 
APPLICABLE REMARKS
  • Time-saving High-Intensity Interval Training (HIIT) can be used as an alternative to exercising therapy for people with obesity.
  • The effect of the 45 bp I/D UCP2 gene requires further research with a more significant number of participants and the availability of a more complete 45 bp I/D UCP2 genotype.

Type of Study: Original Article | Subject: Exercise, Training and Health
Received: 2021/05/20 | Accepted: 2021/07/25 | Published: 2022/06/20 | ePublished: 2022/06/20

References
1. Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with obesity. Ann Transl Med. 2017;5(7):1-12. [DOI:10.21037/atm.2017.03.107] [PMID] [PMCID]
2. World Health Organization. Obesity and overweight [Internet]. [cited 2019 Aug 9]. 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
3. Kementerian Kesehatan Republik Indonesia. Panduan pelaksanaan gerakan nusantara tekan angka obesitas. Jakarta: p2ptm Kemenkes RI; 2017.
4. Liu J, Zhu L, Su Y. Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: A meta-analysis of randomized controlled trials. Front Physiol. 2020;3:11. [DOI:10.3389/fphys.2020.00214] [PMID] [PMCID]
5. Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev [Internet]. 2017;18(6):635-646. [DOI:10.1111/obr.12532] [PMID]
6. Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exerc Sport Sci Rev [Internet].2008(36):2. [DOI:10.1097/JES.0b013e318168ec1f] [PMID]
7. Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab [Internet]. 2013;39(3):409-412. [DOI:10.1139/apnm-2013-0187] [PMID]
8. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation [Internet]. 2008;118(4):346-354. [DOI:10.1161/CIRCULATIONAHA.108.772822] [PMID] [PMCID]
9. Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes [Internet]. 2008;32:684. [DOI:10.1038/sj.ijo.0803781] [PMID]
10. Helgerud JAN, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sport Exerc [Internet]. 2007;39(4). [DOI:10.1249/mss.0b013e3180304570] [PMID]
11. Nybo L, Sundstrup E, Jakobsen MD, Mohr M, Hornstrup T, Simonsen L. High-intensity training versus traditional exercise interventions for promoting health. Med Sci Sport Exerc [Internet]. 2010;42(10). [DOI:10.1249/MSS.0b013e3181d99203] [PMID]
12. Martin-Smith R, Cox A, Buchan DS, Baker JS, Grace F, Sculthorpe N. High intensity interval training (HIIT) improves cardiorespiratory fitness (CRF) in healthy, overweight and obese adolescents: A systematic review and meta-analysis of controlled studies. Int J Environ Res Pub Health. 2020;17(MDPI ). [DOI:10.3390/ijerph17082955] [PMID] [PMCID]
13. Snyder EE, Walts B, Pérusse L, Chagnon YC, Weisnagel SJ, Rankinen T. The human obesity gene map: the 2003 update. Obes Res [Internet]. 2004;12(3):369-439. [DOI:10.1038/oby.2004.47] [PMID]
14. Hjelmborg JVB, Fagnani C, Silventoinen K, McGue M, Korkeila M, Christensen K. Genetic influences on growth traits of BMI: A longitudinal study of adult twins. Obesity. 2008;16(4):847-852. [DOI:10.1038/oby.2007.135] [PMID]
15. Wardle J. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87:398-404. [DOI:10.1093/ajcn/87.2.398] [PMID]
16. Rasjad Indra M. Dasar genetik obesitas viseral. J Kedokt Brawijaya. 2006;22(1):10-17. [DOI:10.21776/ub.jkb.2006.022.01.3]
17. Brondani L de A, Canani S, B. M., de A, T. S., Bouças AP, Bauer AC. Association of the UCP polymorphisms with susceptibility to obesity: case-control study and meta-analysis. Mol Biol Rep. 2014;41(8):5053-5067. [DOI:10.1007/s11033-014-3371-7] [PMID]
18. Surniyantoro HNE, Sadewa AH, Hastuti P. Uncoupling Protein 2 (UCP2) as Genetic Risk Factor for Obesity in Indonesia is Different in Gender Stratification. Kobe J Med Sci. 2018;64(2):E64-72.
19. Say YH, Ban ZL, Arumugam Y, Kaur T, Tan ML, Chia PP. Uncoupling protein 2 gene (UCP2) 45-bp I/D polymorphism is associated with adiposity among Malaysian women. J Biosci. 2014;39(5):867-875. [DOI:10.1007/s12038-014-9488-y] [PMID]
20. Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol [Internet]. 2011;1(3):1603-1648. [DOI:10.1002/cphy.c100059] [PMID] [PMCID]
21. Leonska-Duniec A, Ahmetov, II, Zmijewski P. Genetic variants influencing effectiveness of exercise training programmes in obesity - an overview of human studies. Biol Sport. 2016;33(3):207-214. [DOI:10.5604/20831862.1201052] [PMID] [PMCID]
22. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med [Internet]. 2014;48(16):1227 LP - 1234. [DOI:10.1136/bjsports-2013-092576] [PMID]
23. Wijtzes AI, Bouthoorn SH, Jansen W, Franco OH, Hofman A, Jaddoe VWV. Sedentary behaviors, physical activity behaviors, and body fat in 6-year-old children: the Generation R Study. Int J Behav Nutr Phys Act [Internet]. 2014;11:96. [DOI:10.1186/s12966-014-0096-x] [PMCID]
24. King JA, Emmanuel J, Crystallis K, Wasse LK, Stensel DJ, Ewens J. Differential Acylated Ghrelin, Peptide YY3-36, Appetite, and Food Intake Responses to Equivalent Energy Deficits Created by Exercise and Food Restriction. J Clin Endocrinol Metab [Internet]. 2011;96(4):1114-1121. [DOI:10.1210/jc.2010-2735] [PMID]
25. Ouerghi N, Ben Fradj MK, Bezrati I, Khammassi M, Feki M, Kaabachi N. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol Sport. 2017;34(4):385-392. [DOI:10.5114/biolsport.2017.69827] [PMID] [PMCID]
26. Putra MA. The Effect of High Insity Interval Traning ( HIIT ) on Body Mass Index of Menopausal Women. J MensSana. 2019;4(2):106-110. [DOI:10.24036/jm.v4i2.90]
27. Hughes IL, Higgins T. Six Weeks High Intensity Interval Training (HIIT) Improves a Variety of Different Diabetes Mellitus Type 2 Risk Markers. Int J Phys Med Rehabil. 2019;7(1):1-10.
28. Permatasari D, Purnawati S, Satriyasa BK, Made L, Sri I, Adiputra H. Pelatihan Interval Intensitas Tinggi Lebih Efektif Menurunkan Persentase Lemak Tubuh Dibandingkan Pelatihan Kontinyu Submaksimal Pada Siswa Sman 4. 2017;5(2):10-20.
29. Alahmadi MA. High-intensity Interval Training and Obesity. J Nov Physiother. 2014;4(3). [DOI:10.4172/2165-7025.1000211]
30. Townsend JR, Stout JR, Morton AB, Jajtner AR, Gonzalez AM, Wells AJ. Excess post-exercise oxygen consumption (EPOC) following multiple effort sprint and moderate aerobic exercise. Kineziologija. 2013;45(1):16-21.
31. Santos MA, dos M, F., Albarello JC dos S, Halmenschlager GH. Comparison of epoc and recovery energy expenditure between hiit and continuous aerobic exercise training. Rev Bras Med do Esporte. 2019;25(1):20-23. [DOI:10.1590/1517-869220192501181346]
32. Talanian JL, Galloway SDR, Heigenhauser GJF, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol. 2007;102(4):1439-1447. [DOI:10.1152/japplphysiol.01098.2006] [PMID]
33. Ram A, Marcos L, Jones MD, Morey R, Hakansson S, Clark T. The effect of high-intensity interval training and moderate-intensity continuous training on aerobic fitness and body composition in males with overweight or obesity: A randomized trial. Obes Med [Internet]. 2020;17(1):100187. [DOI:10.1016/j.obmed.2020.100187]
34. Keating SE, Johnson NA, Mielke GI, Coombes JS. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev [Internet]. 2017;18(8):943-964. [DOI:10.1111/obr.12536] [PMID]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Annals of Applied Sport Science

Designed & Developed by : Yektaweb